SOME REMARKS ON FORMAL POWER SERIES AND FORMAL LAURENT SERIES

被引:2
|
作者
Bugajewski, Dariusz [1 ]
Gan, Xiao-Xiong [2 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Umultowska 87, PL-6161 Poznan, Poland
[2] Morgan State Univ, Dept Math, Baltimore, MD 21251 USA
关键词
convolution; dot product; formal Laurent series; formal power series; non-Archimedean valuation; nonexpansive mapping; order; product (multiplication); spherical completeness; ultrametric; RIORDAN MATRICES;
D O I
10.1515/ms-2016-0297
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we consider the topology on the set of formal Laurent series induced by the ultrametric defined via the order. In particular, we establish that the product of formal Laurent series, considered in [GAN, X. X.-BUGAJEWSKI, D.:On formal Laurent series, Bull. Braz. Math. Soc. 42 (2011), 415-437], is not continuous. We also show some applications of fixed point theorems to some nonlinear mappings defined on the space of formal power series or on the space of formal Laurent series. Finally, in the second part of the paper, we propose another approach to study of dot product and multiplication of formal Laurent series, in particular establishing integral representation of dot product and convolution representation of multiplication. (C) 2017 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:631 / 644
页数:14
相关论文
共 50 条
  • [1] SOME REMARKS ON FORMAL POWER SERIES RING
    OMALLEY, MJ
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1971, 99 (03): : 247 - &
  • [2] On formal Laurent series
    Gan, Xiao-Xiong
    Bugajewski, Dariusz
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (03): : 415 - 437
  • [3] On formal Laurent series
    Xiao-Xiong Gan
    Dariusz Bugajewski
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 415 - 437
  • [4] ON THE VALUES OF SOME POWER SERIES IN THE FIELD OF FORMAL LAURENT SERIES OVER A FINITE FIELD
    Caliskan, Fatma
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2016, 69 (12): : 1549 - 1556
  • [5] Further remarks on formal power series
    Borkowski, Marcin
    Mackowiak, Piotr
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2012, 53 (04): : 549 - 555
  • [6] LIOUVILLE NUMBERS AND LACUNARY POWER SERIES IN THE FIELD OF FORMAL LAURENT SERIES
    Caliskan, Fatma
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (07): : 957 - 963
  • [7] Support of Laurent series algebraic over the field of formal power series
    Aroca, Fuensanta
    Rond, Guillaume
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (03) : 577 - 605
  • [8] Formal Laurent series in several variables
    Monforte, Ainhoa Aparicio
    Kauers, Manuel
    [J]. EXPOSITIONES MATHEMATICAE, 2013, 31 (04) : 350 - 367
  • [9] ON SOME FORMAL POWER SERIES EXPANSIONS
    BOUWKAMP, CJ
    DEBRUIJN, NG
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1969, 72 (04): : 301 - &
  • [10] Approximation orders of formal Laurent series by β-expansions
    Wang, Shuai Ling
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (04) : 1039 - 1055