Inhomogeneous Diophantine approximation over the field of formal Laurent series

被引:6
|
作者
Ma, Chao [1 ]
Su, Wei-Yi [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
finite field; inhomogeneous Diophantine approximation; metric theory; exceptional sets; Hausdorff dimension;
D O I
10.1016/j.ffa.2007.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
De Mathan [B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France, Suppl. Mem. 21 (1970)] proved that Khintchine's theorem on homogeneous Diophantine approximation has an analogue in the field of formal Laurent series. Kristensen IS. Kristensen, On the well-approximable matrices over a field of formal series, Math. Proc. Cambridge Philos. Soc. 135 (2003) 255-268] extended this metric theorem to systems of linear forms and gave the exact Hausdorff dimension of the corresponding exceptional sets. In this paper, we study the inhomogeneous Diophantine approximation over a field of formal Laurent series, the analogue Khintchine's theorem and Jarnik-Besicovitch theorem are proved. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:361 / 378
页数:18
相关论文
共 50 条