Classification of Stable Solutions to a Fractional Singular Elliptic Equation with Weight

被引:2
|
作者
Anh Tuan Duong [1 ,2 ]
Vu Trong Luong [3 ]
Thi Quynh Nguyen [4 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Vietnam Natl Univ, VNU Univ Educ, 144 Xuan Thuy, Hanoi, Vietnam
[4] Hanoi Univ Ind, Fac Fundamental Sci, Hanoi, Vietnam
关键词
Liouville type theorems; Stable solutions; Fractional singular elliptic equations; Negative exponent nonlinearity; LIOUVILLE-TYPE THEOREMS; POSITIVE SOLUTIONS; DELTA-U; STABILITY; SYMMETRY; SYSTEMS; E(U);
D O I
10.1007/s10440-020-00347-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p > 0 and (-Delta)(s) is the fractional Laplacian with 0 < s < 1. The purpose of this paper is to establish a classification result for positive stable solutions to a fractional singular elliptic equation with weight (-Delta)(s)u = -h(x)u(-p) in R-N. Here N > 2s and h is a nonnegative, continuous function satisfying h(x) >= C vertical bar x vertical bar(a), a >= 0, when vertical bar x vertical bar large. We prove the nonexistence of positive stable solutions of this equation under the condition N < 2s + 2(a +2s)/p + 1 (p + root p(2) + p) or equivalently p > p(c (N, s, a),) where p(c) (N, s, a) = {(N-2s)(2)-2(N+a) (a+2s)+2 root(a + 2s)(3)(2N-2s+a)/(N-2s) (10s+4a-N) if N < 10s + 4a +infinity if N >= 10s + 4a
引用
收藏
页码:579 / 591
页数:13
相关论文
共 50 条
  • [41] The Multiplicity of Solutions for a Certain Class of Fractional Elliptic Equation
    Zhang, Shifeng
    Jia, Zhiyang
    Wang, Jihe
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, SIMULATION AND MODELLING, 2016, 41 : 76 - 78
  • [42] Periodic solutions of a semilinear elliptic equation with a fractional Laplacian
    Gui, Changfeng
    Zhang, Jie
    Du, Zhuoran
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 363 - 373
  • [43] Properties of Solutions to Fractional Laplace Equation with Singular Term
    Wang Xinjing
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 36 (02): : 191 - 202
  • [44] The existence of positive solutions for the singular fractional differential equation
    Jiang W.
    Huang X.
    Guo W.
    Zhang Q.
    Jiang, W. (weihuajiang@hebust.edu.cn), 1600, Springer Verlag (41): : 171 - 182
  • [45] ON A SINGULAR ELLIPTIC EQUATION
    NI, WM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (04) : 614 - 616
  • [46] Existence and multiplicity of weak solutions for a singular quasilinear elliptic equation
    Huang, Jincheng
    Xiu, Zonghu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (08) : 1450 - 1460
  • [47] Existence of multiple solutions for a singular quasilinear elliptic equation in RN
    Zhu, Shenglan
    Chen, Caisheng
    Yao, Huaping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) : 4525 - 4534
  • [48] On the solutions of a singular elliptic equation concentrating on two orthogonal spheres
    B. B. Manna
    P. N. Srikanth
    Nonlinear Differential Equations and Applications NoDEA, 2014, 21 : 915 - 927
  • [49] Existence of Solutions to Elliptic Equation with Exponential Nonlinearities and Singular Term
    Xue Yimin
    Chen Shouting
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2019, 32 (02): : 156 - 170
  • [50] Partial regularity for solutions of a nonlinear elliptic equation with singular nonlinearity
    Guo, Zongming
    Hou, Songbo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 806 - 816