Classification of Stable Solutions to a Fractional Singular Elliptic Equation with Weight

被引:2
|
作者
Anh Tuan Duong [1 ,2 ]
Vu Trong Luong [3 ]
Thi Quynh Nguyen [4 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Vietnam Natl Univ, VNU Univ Educ, 144 Xuan Thuy, Hanoi, Vietnam
[4] Hanoi Univ Ind, Fac Fundamental Sci, Hanoi, Vietnam
关键词
Liouville type theorems; Stable solutions; Fractional singular elliptic equations; Negative exponent nonlinearity; LIOUVILLE-TYPE THEOREMS; POSITIVE SOLUTIONS; DELTA-U; STABILITY; SYMMETRY; SYSTEMS; E(U);
D O I
10.1007/s10440-020-00347-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p > 0 and (-Delta)(s) is the fractional Laplacian with 0 < s < 1. The purpose of this paper is to establish a classification result for positive stable solutions to a fractional singular elliptic equation with weight (-Delta)(s)u = -h(x)u(-p) in R-N. Here N > 2s and h is a nonnegative, continuous function satisfying h(x) >= C vertical bar x vertical bar(a), a >= 0, when vertical bar x vertical bar large. We prove the nonexistence of positive stable solutions of this equation under the condition N < 2s + 2(a +2s)/p + 1 (p + root p(2) + p) or equivalently p > p(c (N, s, a),) where p(c) (N, s, a) = {(N-2s)(2)-2(N+a) (a+2s)+2 root(a + 2s)(3)(2N-2s+a)/(N-2s) (10s+4a-N) if N < 10s + 4a +infinity if N >= 10s + 4a
引用
收藏
页码:579 / 591
页数:13
相关论文
共 50 条
  • [21] ON THE CLASSIFICATION OF SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION
    CHENG, KS
    WANG, JN
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (02) : 115 - 137
  • [22] Qualitative properties of singular solutions to fractional elliptic equations
    Huang, Shuibo
    Zhang, Zhitao
    Liu, Zhisu
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (05) : 1155 - 1190
  • [23] Symmetry of solutions to singular fractional elliptic equations and applications
    Arora, Rakesh
    Giacomoni, Jacques
    Goel, Divya
    Sreenadh, Konijeti
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (02) : 237 - 243
  • [24] Positive solutions to a fractional equation with singular nonlinearity
    Adimurthi
    Giacomoni, Jacques
    Santra, Sanjiban
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (04) : 1191 - 1226
  • [25] Singular solutions of a nonlinear elliptic equation in a punctured domain
    Bachar, Imed
    Maagli, Habib
    Radulescu, Vicentiu D.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (94) : 1 - 19
  • [26] ELLIPTIC SINGULAR WAVE SOLUTIONS AND THEIR LIMITS OF A SIMPLE EQUATION
    Li, Zongguang
    Liu, Zhengrong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (03): : 1195 - 1210
  • [27] Existence of solutions for singular critical semilinear elliptic equation
    Wang, Mengchao
    Zhang, Qi
    APPLIED MATHEMATICS LETTERS, 2019, 94 : 217 - 223
  • [28] Two solutions for a singular elliptic equation by variational methods
    Montenegro, Marcelo
    Silva, Elves A. B.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2012, 11 (01) : 143 - 165
  • [29] EXISTENCE OF SINGULAR SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATION IN RN
    PAN, XB
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (01) : 191 - 203
  • [30] Radially symmetric solutions of a nonlinear singular elliptic equation
    Hsu, Shu-Yu
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2024, 26 (03)