Classification of Stable Solutions to a Fractional Singular Elliptic Equation with Weight

被引:2
|
作者
Anh Tuan Duong [1 ,2 ]
Vu Trong Luong [3 ]
Thi Quynh Nguyen [4 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Vietnam Natl Univ, VNU Univ Educ, 144 Xuan Thuy, Hanoi, Vietnam
[4] Hanoi Univ Ind, Fac Fundamental Sci, Hanoi, Vietnam
关键词
Liouville type theorems; Stable solutions; Fractional singular elliptic equations; Negative exponent nonlinearity; LIOUVILLE-TYPE THEOREMS; POSITIVE SOLUTIONS; DELTA-U; STABILITY; SYMMETRY; SYSTEMS; E(U);
D O I
10.1007/s10440-020-00347-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p > 0 and (-Delta)(s) is the fractional Laplacian with 0 < s < 1. The purpose of this paper is to establish a classification result for positive stable solutions to a fractional singular elliptic equation with weight (-Delta)(s)u = -h(x)u(-p) in R-N. Here N > 2s and h is a nonnegative, continuous function satisfying h(x) >= C vertical bar x vertical bar(a), a >= 0, when vertical bar x vertical bar large. We prove the nonexistence of positive stable solutions of this equation under the condition N < 2s + 2(a +2s)/p + 1 (p + root p(2) + p) or equivalently p > p(c (N, s, a),) where p(c) (N, s, a) = {(N-2s)(2)-2(N+a) (a+2s)+2 root(a + 2s)(3)(2N-2s+a)/(N-2s) (10s+4a-N) if N < 10s + 4a +infinity if N >= 10s + 4a
引用
收藏
页码:579 / 591
页数:13
相关论文
共 50 条
  • [31] Elliptic solutions of the defocusing NLS equation are stable
    Bottman, Nathaniel
    Deconinck, Bernard
    Nivala, Michael
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [32] Positive solutions of a semilinear elliptic equation with singular nonlinearity
    Guo, Hongxia
    Guo, Zongming
    Li, Ke
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) : 344 - 359
  • [33] Weak positive solutions to singular quasilinear elliptic equation
    Souissi, Chouhaid
    Hsini, Mounir
    Irzi, Nawal
    Hadba, Wakaa Ali
    GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [34] Radial symmetric normalized solutions for a singular elliptic equation
    He, Pengfei
    Suo, Hongmin
    APPLIED MATHEMATICS LETTERS, 2024, 152
  • [35] Existence of solutions for an elliptic equation with indefinite weight
    Jing, Zeng
    Li Yongqing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (11) : 2512 - 2519
  • [36] Periodic Solutions of a Singular Equation With Indefinite Weight
    Luis Bravo, Jose
    Torres, Pedro J.
    ADVANCED NONLINEAR STUDIES, 2010, 10 (04) : 927 - 938
  • [37] ASYMPTOTIC BEHAVIOR OF SINGULAR SOLUTIONS TO SEMILINEAR FRACTIONAL ELLIPTIC EQUATIONS
    Lin, Guowei
    Zheng, Xiongjun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [38] Weakly and strongly singular solutions of semilinear fractional elliptic equations
    Chen, Huyuan
    Veron, Laurent
    ASYMPTOTIC ANALYSIS, 2014, 88 (03) : 165 - 184
  • [39] Singular boundary behaviour and large solutions for fractional elliptic equations
    Abatangelo, Nicola
    Gomez-Castro, David
    Luis Vazquez, Juan
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (02): : 568 - 615
  • [40] Periodic solutions of a semilinear elliptic equation with a fractional Laplacian
    Changfeng Gui
    Jie Zhang
    Zhuoran Du
    Journal of Fixed Point Theory and Applications, 2017, 19 : 363 - 373