The Monotone Extended Second-Order Cone and Mixed Complementarity Problems

被引:2
|
作者
Gao, Yingchao [1 ]
Nemeth, Sandor Zoltan [1 ]
Sznajder, Roman [2 ]
机构
[1] Univ Birmingham, Birmingham, W Midlands, England
[2] Bowie State Univ, Bowie, MD USA
关键词
Monotone extended second-order cone; Lyapunov rank; Complementarity problems; LYAPUNOV RANK;
D O I
10.1007/s10957-021-01962-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study a new generalization of the Lorentz cone L-+(n), called the monotone extended second-order cone (MESOC). We investigate basic properties of MESOC including computation of its Lyapunov rank and proving its reducibility. Moreover, we show that in an ambient space, a cylinder is an isotonic projection set with respect to MESOC. We also examine a nonlinear complementarity problem on a cylinder, which is equivalent to a suitable mixed complementarity problem, and provide a computational example illustrating applicability of MESOC.
引用
收藏
页码:381 / 407
页数:27
相关论文
共 50 条
  • [31] Characterization of Q-property for cone automorphisms in second-order cone linear complementarity problems
    Mondal, Chiranjit
    Balaji, R.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6155 - 6175
  • [32] A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems
    Cheng, Lulu
    Zhang, Xinzhen
    Ni, Guyan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (03) : 715 - 732
  • [33] A proximal gradient descent method for the extended second-order cone linear complementarity problem
    Pan, Shaohua
    Chen, Jein-Shan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (01) : 164 - 180
  • [34] EXACT FORMULA FOR THE SECOND-ORDER TANGENT SET OF THE SECOND-ORDER CONE COMPLEMENTARITY SET
    Chen, Jein-Shan
    Ye, Jane J.
    Zhang, Jin
    Zhou, Jinchuan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2986 - 3011
  • [35] An approximate lower order penalty approach for solving second-order cone linear complementarity problems
    Hao, Zijun
    Nguyen, Chieu Thanh
    Chen, Jein-Shan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2022, 83 (04) : 671 - 697
  • [36] An approximate lower order penalty approach for solving second-order cone linear complementarity problems
    Zijun Hao
    Chieu Thanh Nguyen
    Jein-Shan Chen
    [J]. Journal of Global Optimization, 2022, 83 : 671 - 697
  • [37] THE SECOND-ORDER CONE QUADRATIC EIGENVALUE COMPLEMENTARITY PROBLEM
    Iusem, Alfredo N.
    Judice, Joaquim J.
    Sessa, Valentina
    Sherali, Hanif D.
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (03): : 475 - 500
  • [38] The convex and monotone functions associated with second-order cone
    Chen, Jein-Shan
    [J]. OPTIMIZATION, 2006, 55 (04) : 363 - 385
  • [39] The Matrix Splitting Iteration Method for Nonlinear Complementarity Problems Associated with Second-Order Cone
    Ke, Yifen
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (01) : 31 - 53
  • [40] A second-order cone linear complementarity approach for contact problems with orthotropic friction law
    Li, Jianyu
    Zhang, Hongwu
    Pan, Shaohua
    [J]. Guti Lixue Xuebao/Acta Mechanica Solida Sinica, 2010, 31 (02): : 109 - 118