The Monotone Extended Second-Order Cone and Mixed Complementarity Problems

被引:2
|
作者
Gao, Yingchao [1 ]
Nemeth, Sandor Zoltan [1 ]
Sznajder, Roman [2 ]
机构
[1] Univ Birmingham, Birmingham, W Midlands, England
[2] Bowie State Univ, Bowie, MD USA
关键词
Monotone extended second-order cone; Lyapunov rank; Complementarity problems; LYAPUNOV RANK;
D O I
10.1007/s10957-021-01962-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study a new generalization of the Lorentz cone L-+(n), called the monotone extended second-order cone (MESOC). We investigate basic properties of MESOC including computation of its Lyapunov rank and proving its reducibility. Moreover, we show that in an ambient space, a cylinder is an isotonic projection set with respect to MESOC. We also examine a nonlinear complementarity problem on a cylinder, which is equivalent to a suitable mixed complementarity problem, and provide a computational example illustrating applicability of MESOC.
引用
收藏
页码:381 / 407
页数:27
相关论文
共 50 条
  • [21] The GUS-property of second-order cone linear complementarity problems
    Yang, Wei Hong
    Yuan, Xiaoming
    [J]. MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 295 - 317
  • [22] A novel inexact smoothing method for second-order cone complementarity problems
    [J]. Wan, Z. (mathwanzhp@whu.edu.cn), 1600, World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (12):
  • [23] A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems
    Samir Adly
    Hadia Rammal
    [J]. Journal of Optimization Theory and Applications, 2015, 165 : 563 - 585
  • [24] A semidefinite relaxation method for second-order cone polynomial complementarity problems
    Cheng, Lulu
    Zhang, Xinzhen
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 75 (03) : 629 - 647
  • [25] A semidefinite relaxation method for second-order cone polynomial complementarity problems
    Lulu Cheng
    Xinzhen Zhang
    [J]. Computational Optimization and Applications, 2020, 75 : 629 - 647
  • [26] Smoothing penalty approach for solving second-order cone complementarity problems
    Nguyen, Chieu Thanh
    Alcantara, Jan Harold
    Hao, Zijun
    Chen, Jein-Shan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2024,
  • [27] The GUS-property of second-order cone linear complementarity problems
    Wei Hong Yang
    Xiaoming Yuan
    [J]. Mathematical Programming, 2013, 141 : 295 - 317
  • [28] The second-order cone eigenvalue complementarity problem
    Fernandes, Luis M.
    Fukushima, Masao
    Judice, Joaquim J.
    Sherali, Hanif D.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (01): : 24 - 52
  • [29] A Class of Second-Order Cone Eigenvalue Complementarity Problems for Higher-Order Tensors
    Hou J.-J.
    Ling C.
    He H.-J.
    [J]. He, Hong-Jin (hehjmath@hdu.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (05): : 45 - 64
  • [30] A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems
    Lulu Cheng
    Xinzhen Zhang
    Guyan Ni
    [J]. Journal of Global Optimization, 2021, 79 : 715 - 732