Bayesian Nonparametric Modeling for Predicting Dynamic Dependencies in Multiple Object Tracking

被引:2
|
作者
Moraffah, Bahman [1 ]
Papandreou-Suppappola, Antonia [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
multiple object tracking; Monte Carlo sampling method; Bayesian nonparametric modeling; dependent Dirichlet process; dependent Pitman-Yor process;
D O I
10.3390/s22010388
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The paper considers the problem of tracking an unknown and time-varying number of unlabeled moving objects using multiple unordered measurements with unknown association to the objects. The proposed tracking approach integrates Bayesian nonparametric modeling with Markov chain Monte Carlo methods to estimate the parameters of each object when present in the tracking scene. In particular, we adopt the dependent Dirichlet process (DDP) to learn the multiple object state prior by exploiting inherent dynamic dependencies in the state transition using the dynamic clustering property of the DDP. Using the DDP to draw the mixing measures, Dirichlet process mixtures are used to learn and assign each measurement to its associated object identity. The Bayesian posterior to estimate the target trajectories is efficiently implemented using a Gibbs sampler inference scheme. A second tracking approach is proposed that replaces the DDP with the dependent Pitman-Yor process in order to allow for a higher flexibility in clustering. The improved tracking performance of the new approaches is demonstrated by comparison to the generalized labeled multi-Bernoulli filter.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Dynamic Nonparametric Bayesian Models for Analysis of Music
    Ren, Lu
    Dunson, David
    Lindroth, Scott
    Carin, Lawrence
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) : 458 - 472
  • [42] A Bayesian nonparametric study of a dynamic nonlinear model
    Hatjispyros, Spyridon J.
    Nicoleris, Theodoros
    Walker, Stephen G.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 3948 - 3956
  • [43] Nonparametric Bayesian Modeling and Estimation for Renewal Processes
    [J]. Sansó, Bruno, 1600, American Statistical Association (63):
  • [44] Bayesian Nonparametric Modeling for Multivariate Ordinal Regression
    DeYoreo, Maria
    Kottas, Athanasios
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 71 - 84
  • [45] Nonparametric Bayesian modeling for multivariate ordinal data
    Kottas, A
    Müller, P
    Quintana, F
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (03) : 610 - 625
  • [46] Bayesian modeling via discrete nonparametric priors
    Catalano, Marta
    Lijoi, Antonio
    Prunster, Igor
    Rigon, Tommaso
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2023, 6 (02) : 607 - 624
  • [47] A Bayesian Nonparametric Approach to Modeling Battery Health
    Joseph, Joshua
    Doshi-Velez, Finale
    Roy, Nicholas
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 1876 - 1882
  • [48] A Bayesian Nonparametric Approach to Modeling Mobility Patterns
    Joseph, Joshua
    Doshi-Velez, Finale
    Roy, Nicholas
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 1587 - 1593
  • [49] Nonparametric Bayesian Modeling and Estimation for Renewal Processes
    Xiao, Sai
    Kottas, Athanasios
    Sanso, Bruno
    Kim, Hyotae
    [J]. TECHNOMETRICS, 2021, 63 (01) : 100 - 115
  • [50] Combinatorial Stochastic Processes and Nonparametric Bayesian Modeling
    Jordan, Michael I.
    [J]. PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 139 - 139