Bayesian Nonparametric Modeling for Predicting Dynamic Dependencies in Multiple Object Tracking

被引:2
|
作者
Moraffah, Bahman [1 ]
Papandreou-Suppappola, Antonia [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
multiple object tracking; Monte Carlo sampling method; Bayesian nonparametric modeling; dependent Dirichlet process; dependent Pitman-Yor process;
D O I
10.3390/s22010388
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The paper considers the problem of tracking an unknown and time-varying number of unlabeled moving objects using multiple unordered measurements with unknown association to the objects. The proposed tracking approach integrates Bayesian nonparametric modeling with Markov chain Monte Carlo methods to estimate the parameters of each object when present in the tracking scene. In particular, we adopt the dependent Dirichlet process (DDP) to learn the multiple object state prior by exploiting inherent dynamic dependencies in the state transition using the dynamic clustering property of the DDP. Using the DDP to draw the mixing measures, Dirichlet process mixtures are used to learn and assign each measurement to its associated object identity. The Bayesian posterior to estimate the target trajectories is efficiently implemented using a Gibbs sampler inference scheme. A second tracking approach is proposed that replaces the DDP with the dependent Pitman-Yor process in order to allow for a higher flexibility in clustering. The improved tracking performance of the new approaches is demonstrated by comparison to the generalized labeled multi-Bernoulli filter.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Bayesian Nonparametric Approach to Multiple Testing
    Ghosal, Subhashis
    Roy, Anindya
    [J]. PERSPECTIVES IN MATHEMATICAL SCIENCES I: PROBABILITY AND STATISTICS, 2009, 7 : 139 - +
  • [32] Predicting Eye Movements in Multiple Object Tracking Using Neural Networks
    Dechterenko, Filip
    Lukavsky, Jiri
    [J]. 2016 ACM SYMPOSIUM ON EYE TRACKING RESEARCH & APPLICATIONS (ETRA 2016), 2016, : 271 - 274
  • [33] Multiple object tracking using A* association algorithm with dynamic weights
    Xi, Zhenghao
    Tang, Shengchun
    Wu, Jianzhen
    Zheng, Yang
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (05) : 2059 - 2072
  • [34] A* algorithm with dynamic weights for multiple object tracking in video sequence
    Xi, Zhenghao
    Xu, Dongmei
    Song, Wanqing
    Zheng, Yang
    [J]. OPTIK, 2015, 126 (20): : 2500 - 2507
  • [35] Dynamic feature cascade for multiple object tracking with trackability analysis
    Li, Zheng
    Gong, Haifeng
    Zhu, Song-Chun
    Sang, Nong
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 2007, 4679 : 350 - +
  • [36] MULTIPLE OBJECT TRACKING BASED ON SPARSE GENERATIVE APPEARANCE MODELING
    Riahi, Dorra
    Bilodeau, Guillaume-Alexandre
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4017 - 4021
  • [37] Spatiotemporal Energy Modeling for Foreground Segmentation in Multiple Object Tracking
    Shao, Jie
    Jia, Zhen
    Li, Zhipeng
    Liu, Fuqiang
    Zhao, Jianwei
    Peng, Pei-Yuan
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [38] Improving Multiple Object Tracking with Single Object Tracking
    Zheng, Linyu
    Tang, Ming
    Chen, Yingying
    Zhu, Guibo
    Wang, Jinqiao
    Lu, Hanqing
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2453 - 2462
  • [39] Nonparametric Bayesian Extraction of Object Configurations in Massive Data
    Meillier, Celine
    Chatelain, Florent
    Michel, Olivier
    Ayasso, Hacheme
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (08) : 1911 - 1924
  • [40] Nonparametric Bayesian Models for Unsupervised Activity Recognition and Tracking
    Dhir, Neil
    Perov, Yura
    Wood, Frank
    [J]. 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 4040 - 4045