Percolation of randomly distributed growing clusters: Finite-size scaling and critical exponents for the square lattice

被引:19
|
作者
Tsakiris, N. [1 ]
Maragakis, M. [1 ]
Kosmidis, K. [1 ]
Argyrakis, P. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece
关键词
D O I
10.1103/PhysRevE.82.041108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the percolation properties of the growing clusters model on a 2D square lattice. In this model, a number of seeds placed on random locations on the lattice are allowed to grow with a constant velocity to form clusters. When two or more clusters eventually touch each other they immediately stop their growth. The model exhibits a discontinuous transition for very low values of the seed concentration p and a second, nontrivial continuous phase transition for intermediate p values. Here we study in detail this continuous transition that separates a phase of finite clusters from a phase characterized by the presence of a giant component. Using finite size scaling and large scale Monte Carlo simulations we determine the value of the percolation threshold where the giant component first appears, and the critical exponents that characterize the transition. We find that the transition belongs to a different universality class from the standard percolation transition.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Thresholds and critical exponents of explosive bond percolation on the square lattice
    Wu, Qianqian
    Wang, Junfeng
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022, 33 (07):
  • [32] FINITE-SIZE SCALING AND CRITICAL EXPONENTS - A NEW APPROACH AND ITS APPLICATION TO ANDERSON LOCALIZATION
    HOFSTETTER, E
    SCHREIBER, M
    [J]. EUROPHYSICS LETTERS, 1993, 21 (09): : 933 - 939
  • [33] Finite-size scaling theory for anisotropic percolation models
    Sinha, Santanu
    Santra, S. B.
    [J]. INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, 2008, 82 (07): : 919 - 927
  • [34] The Birth of the Infinite Cluster:¶Finite-Size Scaling in Percolation
    C. Borgs
    J. T. Chayes
    H. Kesten
    J. Spencer
    [J]. Communications in Mathematical Physics, 2001, 224 : 153 - 204
  • [35] The birth of the infinite cluster: Finite-size scaling in percolation
    Borgs, C
    Chayes, JT
    Kesten, H
    Spencer, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) : 153 - 204
  • [36] Resolving Anomalies in the Critical Exponents of FePt Using Finite-Size Scaling in Magnetic Fields
    Waters, J.
    Kramer, D.
    Sluckin, T. J.
    Hovorka, O.
    [J]. PHYSICAL REVIEW APPLIED, 2019, 11 (02)
  • [37] FINITE-SIZE BEHAVIOR OF ISING SQUARE LATTICE
    LANDAU, DP
    [J]. PHYSICAL REVIEW B, 1976, 13 (07): : 2997 - 3011
  • [38] Finite-size scaling in the driven lattice gas
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (1-2) : 281 - 322
  • [39] Finite-size scaling critical behavior of randomly pinned spin-density waves
    Fisch, Ronald
    [J]. PHYSICAL REVIEW B, 2009, 79 (21)
  • [40] Finite-Size Scaling in the Driven Lattice Gas
    Sergio Caracciolo
    Andrea Gambassi
    Massimiliano Gubinelli
    Andrea Pelissetto
    [J]. Journal of Statistical Physics, 2004, 115 : 281 - 322