Resolving Anomalies in the Critical Exponents of FePt Using Finite-Size Scaling in Magnetic Fields

被引:6
|
作者
Waters, J. [1 ]
Kramer, D. [1 ]
Sluckin, T. J. [2 ]
Hovorka, O. [1 ]
机构
[1] Univ Southampton, Engn & Phys Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Sch Math Sci, Southampton SO17 1BJ, Hants, England
来源
PHYSICAL REVIEW APPLIED | 2019年 / 11卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevApplied.11.024028
中图分类号
O59 [应用物理学];
学科分类号
摘要
FePt is the primary material being considered for the development of information storage technologies based on heat-assisted magnetic recording (HAMR). A practical realization of HAMR requires understanding the high-temperature phase transition behavior of FePt, including critical exponents and Curie temperature distributions as the fundamental HAMR media design characteristics. The studies so far found a significant degree of variability in the values of critical exponents of FePt and remain controversial. Here, we show that at the heart of this variability is the phase transition crossover phenomenon induced by two-ion anisotropy of FePt. Through Monte Carlo simulations based on a realistic FePt effective Hamiltonian, we demonstrate that in order to identify the critical exponents accurately, it is necessary to base the analysis on field-dependent magnetization data. We have developed a two-variable finite-size scaling method that accounts for the field effect. Through the use of this method, we show unambiguously that true critical exponents of FePt are fully consistent with the three-dimensional Heisenberg universality class.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Finite-size scaling and critical exponents in critical relaxation
    Li, ZB
    Schulke, L
    Zheng, B
    [J]. PHYSICAL REVIEW E, 1996, 53 (03): : 2940 - 2948
  • [2] Finite-size scaling and critical exponents of the real antiferromagnetic model
    Murtazaev, AK
    Kamilov, IK
    Aliev, KH
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 204 (1-2) : 151 - 158
  • [3] THE RELATION BETWEEN AMPLITUDES AND CRITICAL EXPONENTS IN FINITE-SIZE SCALING
    NIGHTINGALE, P
    BLOTE, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (17): : L657 - L664
  • [4] Extracting critical exponents by finite-size scaling with convolutional neural networks
    Li, Zhenyu
    Luo, Mingxing
    Wan, Xin
    [J]. PHYSICAL REVIEW B, 2019, 99 (07)
  • [5] Finite-size scaling exponents in the Dicke model
    Vidal, J.
    Dusuel, S.
    [J]. EUROPHYSICS LETTERS, 2006, 74 (05): : 817 - 822
  • [6] Finite-size scaling of critical avalanches
    Yadav, Avinash Chand
    Quadir, Abdul
    Jafri, Haider Hasan
    [J]. PHYSICAL REVIEW E, 2022, 106 (01)
  • [7] FINITE-SIZE SCALING FOR CRITICAL FILMS
    KRECH, M
    DIETRICH, S
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (03) : 345 - 348
  • [8] FINITE-SIZE SCALING AND CRITICAL NUCLEATION
    MON, KK
    JASNOW, D
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (26) : 2983 - 2986
  • [9] FINITE-SIZE SCALING AND CRITICAL EXPONENTS - A NEW APPROACH AND ITS APPLICATION TO ANDERSON LOCALIZATION
    HOFSTETTER, E
    SCHREIBER, M
    [J]. EUROPHYSICS LETTERS, 1993, 21 (09): : 933 - 939
  • [10] Percolation of randomly distributed growing clusters: Finite-size scaling and critical exponents for the square lattice
    Tsakiris, N.
    Maragakis, M.
    Kosmidis, K.
    Argyrakis, P.
    [J]. PHYSICAL REVIEW E, 2010, 82 (04)