Resolving Anomalies in the Critical Exponents of FePt Using Finite-Size Scaling in Magnetic Fields

被引:6
|
作者
Waters, J. [1 ]
Kramer, D. [1 ]
Sluckin, T. J. [2 ]
Hovorka, O. [1 ]
机构
[1] Univ Southampton, Engn & Phys Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Sch Math Sci, Southampton SO17 1BJ, Hants, England
来源
PHYSICAL REVIEW APPLIED | 2019年 / 11卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevApplied.11.024028
中图分类号
O59 [应用物理学];
学科分类号
摘要
FePt is the primary material being considered for the development of information storage technologies based on heat-assisted magnetic recording (HAMR). A practical realization of HAMR requires understanding the high-temperature phase transition behavior of FePt, including critical exponents and Curie temperature distributions as the fundamental HAMR media design characteristics. The studies so far found a significant degree of variability in the values of critical exponents of FePt and remain controversial. Here, we show that at the heart of this variability is the phase transition crossover phenomenon induced by two-ion anisotropy of FePt. Through Monte Carlo simulations based on a realistic FePt effective Hamiltonian, we demonstrate that in order to identify the critical exponents accurately, it is necessary to base the analysis on field-dependent magnetization data. We have developed a two-variable finite-size scaling method that accounts for the field effect. Through the use of this method, we show unambiguously that true critical exponents of FePt are fully consistent with the three-dimensional Heisenberg universality class.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model
    Wang, Jun
    Wu, Wei
    Zhao, Fan
    Zhao, Guo-meng
    [J]. PHYSICAL REVIEW B, 2011, 84 (17):
  • [32] Locating the QCD critical endpoint through finite-size scaling
    Antoniou, N. G.
    Diakonos, F. K.
    Maintas, X. N.
    Tsagkarakis, C. E.
    [J]. PHYSICAL REVIEW D, 2018, 97 (03)
  • [33] Critical dynamics in a binary fluid: Simulations and finite-size scaling
    Das, Subir K.
    Fisher, Michael E.
    Sengers, Jan V.
    Horbach, Juergen
    Binder, Kurt
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (02)
  • [34] Critical-point finite-size scaling in the microcanonical ensemble
    Bruce, AD
    Wilding, NB
    [J]. PHYSICAL REVIEW E, 1999, 60 (04): : 3748 - 3760
  • [35] Critical finite-size scaling with constraints: Fisher renormalization revisited
    Krech, M
    [J]. COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XII, 2000, 85 : 71 - 85
  • [36] Finite-size scaling and universality above the upper critical dimensionality
    Luijten, E
    Blote, HWJ
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (10) : 1557 - 1561
  • [37] Transport phenomena in fluids: Finite-size scaling for critical behavior
    Roy, Sutapa
    Das, Subir K.
    [J]. EPL, 2011, 94 (03)
  • [38] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    [J]. PHYSICA A, 1993, 195 (1-2): : 215 - 222
  • [39] Electronic structure critical parameters from finite-size scaling
    Neirotti, JP
    Serra, P
    Kais, S
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (17) : 3142 - 3145
  • [40] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264