A new model for over-dispersed count data: Poisson quasi-Lindley regression model

被引:24
|
作者
Altun, Emrah [1 ]
机构
[1] Bartin Univ, Dept Math, TR-74100 Bartin, Turkey
关键词
Count data; Poisson regression; Negative-binomial regression; Maximum Likelihood; Method of moments; Over-dispersion; LINEAR-MODEL;
D O I
10.1007/s40096-019-0293-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new regression model for count response variable is proposed via re-parametrization of Poisson quasi-Lindley distribution. The maximum likelihood and method of moment estimations are considered to estimate the unknown parameters of re-parametrized Poisson quasi-Lindley distribution. The simulation study is conducted to evaluate the efficiency of estimation methods. The real data set is analyzed to demonstrate the usefulness of proposed model against the well-known regression models for count data modeling such as Poisson and negative-binomial regression models. Empirical results show that when the response variable is over-dispersed, the proposed model provides better results than other competitive models.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [1] A new model for over-dispersed count data: Poisson quasi-Lindley regression model
    Emrah Altun
    Mathematical Sciences, 2019, 13 : 241 - 247
  • [2] Poisson-Modification of Quasi Lindley regression model for over-dispersed count responses
    Tharshan, Ramajeyam
    Wijekoon, Pushpakanthie
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (03) : 1258 - 1273
  • [3] A New Generalization of Poisson Distribution for Over-dispersed, Count Data: Mathematical Properties, Regression Model and Applications
    F. Z. Seghier
    M. Ahsan-ul-Haq
    H. Zeghdoudi
    S. Hashmi
    Lobachevskii Journal of Mathematics, 2023, 44 : 3850 - 3859
  • [4] A New Generalization of Poisson Distribution for Over-dispersed, Count Data: Mathematical Properties, Regression Model and Applications
    Seghier, F. Z.
    Ahsan-ul-Haq, M.
    Zeghdoudi, H.
    Hashmi, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (09) : 3850 - 3859
  • [5] A New Regression Model for Over-Dispersed Count Responses Based on Poisson and Geometric Convolution
    Nandi, Anupama
    Biswas, Aniket
    Hazarika, Partha Jyoti
    Das, Jondeep
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2024,
  • [6] A new over-dispersed count model based on Poisson-Geometric convolution
    Nandi, Anupama
    Chakraborty, Subrata
    Biswas, Aniket
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [7] A Flexible Dispersed Count Model Based on Bernoulli Poisson-Lindley Convolution and Its Regression Model
    Bakouch, Hassan S.
    Chesneau, Christophe
    Maya, Radhakumari
    Irshad, Muhammed Rasheed
    Aswathy, Sreedeviamma
    Qarmalah, Najla
    AXIOMS, 2023, 12 (09)
  • [8] A new three-parameter discrete distribution to model over-dispersed count data
    Nandi, Anupama
    Hazarika, Partha Jyoti
    Biswas, Aniket
    Hamedani, G. G.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2024, 20 (02) : 197 - 215
  • [9] Developing a Random Parameters Negative Binomial-Lindley Model to analyze highly over-dispersed crash count data
    Shaon, Mohammad Razaur Rahman
    Qin, Xiao
    Shirazi, Mohammadali
    Lord, Dominique
    Geedipally, Srinivas Reddy
    ANALYTIC METHODS IN ACCIDENT RESEARCH, 2018, 18 : 33 - 44
  • [10] A New Poisson Generalized Lindley Regression Model
    Atikankul, Yupapin
    AUSTRIAN JOURNAL OF STATISTICS, 2023, 52 (01) : 39 - 50