Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods

被引:16
|
作者
Jia, Shanghui [1 ]
Me, Hehu [2 ]
Yin, Xiaobo [2 ]
Gao, Shaoqin [3 ]
机构
[1] Cent Univ Finance & Econ, Sch Appl Math, Beijing 100081, Peoples R China
[2] CAS, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100081, Peoples R China
[3] Hebei Univ, Coll Math & Comp, Baoding 071002, Peoples R China
关键词
asymptotic expansions; biharmonic eigenvalue problem; extrapolation; nonconforming finite element methods;
D O I
10.1002/num.20268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the biharmonic eigenvalue problem by two nonconforming finite elements, Q(1)(rot) and EQ(1)(rot). We obtain full order convergence rate of the eigenvalue approximations for the biharmonic eigenvalue problem based on asymptotic error expansions for these two nonconforming finite elements. Using the technique of eigenvalue error expansion, the technique of integral identities, and the extrapolation method, we can improve the accuracy of the eigenvalue approximations. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条
  • [1] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Xie, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    [J]. APPLICATIONS OF MATHEMATICS, 2009, 54 (01) : 1 - 15
  • [2] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Shanghui Jia
    Hehu Xie
    Xiaobo Yin
    Shaoqin Gao
    [J]. Applications of Mathematics, 2009, 54 : 1 - 15
  • [3] Asymptotic expansion and extrapolation for the Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet–Raviart scheme
    Wei Chen
    Qun Lin
    [J]. Advances in Computational Mathematics, 2007, 27 : 95 - 106
  • [4] Adaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters
    Gallistl, Dietmar
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2014, 14 (04) : 509 - 535
  • [5] NUMERICAL APPROXIMATION OF THE ELLIPTIC EIGENVALUE PROBLEM BY STABILIZED NONCONFORMING FINITE ELEMENT METHOD
    Weng, Zhifeng
    Zhai, Shuying
    Zeng, Yuping
    Yue, Xiaoqiang
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1161 - 1176
  • [6] Asymptotic expansion and extrapolation for the Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme
    Chen, Wei
    Lin, Qun
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 27 (01) : 95 - 106
  • [7] Nonconforming Finite Element Method for the Transmission Eigenvalue Problem
    Ji, Xia
    Xi, Yingxia
    Xie, Hehu
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (01) : 92 - 103
  • [8] Nonconforming finite element approximations of the Steklov eigenvalue problem
    Yang, Yidu
    Li, Qin
    Li, Sirui
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) : 2388 - 2401
  • [9] Nonconforming finite element analysis for Poisson eigenvalue problem
    Shi, Dongyang
    Wang, Lele
    Liao, Xin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (05) : 835 - 845
  • [10] Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem
    Solov’ev S.I.
    Solov’ev P.S.
    [J]. Lobachevskii Journal of Mathematics, 2018, 39 (7) : 949 - 956