Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods

被引:16
|
作者
Jia, Shanghui [1 ]
Me, Hehu [2 ]
Yin, Xiaobo [2 ]
Gao, Shaoqin [3 ]
机构
[1] Cent Univ Finance & Econ, Sch Appl Math, Beijing 100081, Peoples R China
[2] CAS, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100081, Peoples R China
[3] Hebei Univ, Coll Math & Comp, Baoding 071002, Peoples R China
关键词
asymptotic expansions; biharmonic eigenvalue problem; extrapolation; nonconforming finite element methods;
D O I
10.1002/num.20268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the biharmonic eigenvalue problem by two nonconforming finite elements, Q(1)(rot) and EQ(1)(rot). We obtain full order convergence rate of the eigenvalue approximations for the biharmonic eigenvalue problem based on asymptotic error expansions for these two nonconforming finite elements. Using the technique of eigenvalue error expansion, the technique of integral identities, and the extrapolation method, we can improve the accuracy of the eigenvalue approximations. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条