Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem

被引:12
|
作者
Solov’ev S.I. [1 ]
Solov’ev P.S. [1 ]
机构
[1] Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan
基金
俄罗斯科学基金会;
关键词
eigenvalue; finite element method; nonlinear eigenvalue problem; ordinary differential equation; positive eigenfunction; Radio-frequency induction discharge;
D O I
10.1134/S199508021807020X
中图分类号
学科分类号
摘要
The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for the ordinary differential equation with coefficients depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radiofrequency discharge at reduced pressures. A necessary and sufficient condition for the existence of a minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem is established. The original differential eigenvalue problem is approximated by the finite element method on a uniform grid. The convergence of approximate eigenvalue and approximate positive eigenfunction to exact ones is proved. Investigations of this paper generalize well known results for eigenvalue problems with linear dependence on the spectral parameter. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:949 / 956
页数:7
相关论文
共 50 条
  • [1] Finite Element Approximation of the Minimal Eigenvalue and the Corresponding Positive Eigenfunction of a Nonlinear Sturm—Liouville Problem
    D. M. Korosteleva
    P. S. Solov’ev
    S. I. Solov’ev
    [J]. Lobachevskii Journal of Mathematics, 2019, 40 : 1959 - 1966
  • [2] Finite Element Approximation for the Fractional Eigenvalue Problem
    Juan Pablo Borthagaray
    Leandro M. Del Pezzo
    Sandra Martínez
    [J]. Journal of Scientific Computing, 2018, 77 : 308 - 329
  • [3] Finite Element Approximation for the Fractional Eigenvalue Problem
    Pablo Borthagaray, Juan
    Del Pezzo, Leandro M.
    Martinez, Sandra
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 308 - 329
  • [4] Finite Element Approximation of the Minimal Eigenvalue and the Corresponding Positive Eigenfunction of a Nonlinear Sturm-Liouville Problem
    Korosteleva, D. M.
    Solov'ev, P. S.
    Solov'ev, S. I.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (11) : 1959 - 1966
  • [5] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Xie, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    [J]. APPLICATIONS OF MATHEMATICS, 2009, 54 (01) : 1 - 15
  • [6] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Shanghui Jia
    Hehu Xie
    Xiaobo Yin
    Shaoqin Gao
    [J]. Applications of Mathematics, 2009, 54 : 1 - 15
  • [7] Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Me, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) : 435 - 448
  • [8] FINITE-ELEMENT APPROXIMATION OF A NON-LIPSCHITZ NONLINEAR EIGENVALUE PROBLEM
    BARRETT, JW
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (05): : 627 - 656
  • [9] Simulation of a nonlinear Steklov eigenvalue problem using finite-element approximation
    Kumar P.
    Kumar M.
    [J]. Computational Mathematics and Modeling, 2010, 21 (1) : 109 - 116
  • [10] Finite Element Approximation of a Contact Vector Eigenvalue Problem
    Hennie De Schepper
    Roger Van Keer
    [J]. Applications of Mathematics, 2003, 48 (6) : 559 - 571