Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem

被引:12
|
作者
Solov’ev S.I. [1 ]
Solov’ev P.S. [1 ]
机构
[1] Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan
基金
俄罗斯科学基金会;
关键词
eigenvalue; finite element method; nonlinear eigenvalue problem; ordinary differential equation; positive eigenfunction; Radio-frequency induction discharge;
D O I
10.1134/S199508021807020X
中图分类号
学科分类号
摘要
The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for the ordinary differential equation with coefficients depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radiofrequency discharge at reduced pressures. A necessary and sufficient condition for the existence of a minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem is established. The original differential eigenvalue problem is approximated by the finite element method on a uniform grid. The convergence of approximate eigenvalue and approximate positive eigenfunction to exact ones is proved. Investigations of this paper generalize well known results for eigenvalue problems with linear dependence on the spectral parameter. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:949 / 956
页数:7
相关论文
共 50 条
  • [31] FINITE ELEMENT APPROXIMATION OF EIGENVALUE PROBLEM FOR A COUPLED VIBRATION BETWEEN ACOUSTIC FIELD AND PLATE
    L. Deng
    T. Kako(Department of Computer Science and information Mathematics
    [J]. Journal of Computational Mathematics, 1997, (03) : 265 - 278
  • [32] Approximation of the Stokes eigenvalue problem on triangular domains using a stabilized finite element method
    Önder Türk
    [J]. Meccanica, 2020, 55 : 2021 - 2031
  • [33] Finite element approximation of eigenvalue problem for a coupled vibration between acoustic field and plate
    Deng, L
    Kako, T
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (03) : 265 - 278
  • [34] Approximation of the Stokes eigenvalue problem on triangular domains using a stabilized finite element method
    Turk, Onder
    [J]. MECCANICA, 2020, 55 (10) : 2021 - 2031
  • [35] Successive mth approximation method for the nonlinear eigenvalue problem
    Xiaoping Chen
    Hua Dai
    Wei Wei
    [J]. Computational and Applied Mathematics, 2017, 36 : 1009 - 1021
  • [36] Successive mth approximation method for the nonlinear eigenvalue problem
    Chen, Xiaoping
    Dai, Hua
    Wei, Wei
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (02): : 1009 - 1021
  • [37] A linear eigenvalue algorithm for the nonlinear eigenvalue problem
    Elias Jarlebring
    Wim Michiels
    Karl Meerbergen
    [J]. Numerische Mathematik, 2012, 122 : 169 - 195
  • [38] Nonconforming finite element approximations of the Steklov eigenvalue problem
    Yang, Yidu
    Li, Qin
    Li, Sirui
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) : 2388 - 2401
  • [39] A STABILIZED FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM
    Yuan, Maoqin
    Huang, Pengzhan
    [J]. MATHEMATICAL REPORTS, 2024, 26 (01): : 1 - 16
  • [40] Adaptive finite element methods for the Laplace eigenvalue problem
    Hoppe, R. H. W.
    Wu, H.
    Zhang, Z.
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2010, 18 (04) : 281 - 302