DEEP LEARNING FOR AUTOMATIC CELL DETECTION IN WIDE-FIELD MICROSCOPY ZEBRAFISH IMAGES

被引:0
|
作者
Dong, Bo [1 ,2 ]
Shao, Ling [4 ]
Da Costa, Marc [3 ]
Bandmann, Oliver [3 ]
Frangi, Alejandro F. [1 ,2 ]
机构
[1] Ctr Computat Imaging & Simulat Technol Biomed CIS, Barcelona, Spain
[2] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, S Yorkshire, England
[3] Univ Sheffield, Dept Neurosci, Sheffield S10 2TN, S Yorkshire, England
[4] Northumbria Univ, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
关键词
CLASSIFICATION; SEGMENTATION; REGIONS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The zebrafish has become a popular experimental model organism for biomedical research. In this paper, a unique framework is proposed for automatically detecting Tyrosine Hydroxylase-containing (TH-labeled) cells in larval zebrafish brain z-stack images recorded through the wide-field microscope. In this framework, a supervised max-pooling Convolutional Neural Network (CNN) is trained to detect cell pixels in regions that are preselected by a Support Vector Machine (SVM) classifier. The results show that the proposed deep-learned method outperforms hand-crafted techniques and demonstrate its potential for automatic cell detection in wide-field microscopy z-stack zebrafish images.
引用
收藏
页码:772 / 776
页数:5
相关论文
共 50 条
  • [41] Asbestos Detection with Fluorescence Microscopy Images and Deep Learning
    Cai, Changjie
    Nishimura, Tomoki
    Hwang, Jooyeon
    Hu, Xiao-Ming
    Kuroda, Akio
    SENSORS, 2021, 21 (13)
  • [42] Unsupervised Change Detection in Wide-Field Video Images Under Low Illumination
    Shi, Baoqiang
    Jia, Zhenhong
    Yang, Jie
    Kasabov, Nikola K. K.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (04) : 1564 - 1576
  • [43] The TERAPIX tool for the reduction of wide-field images
    Radovich, M
    Mellier, Y
    Bertin, E
    Missonnier, G
    Didelon, P
    Morin, B
    Dantel-Fort, M
    McCracken, H
    MINING THE SKY, 2001, : 554 - 556
  • [44] Wide and deep learning for automatic cell type identification
    Wilson, Christopher M.
    Fridley, Brooke L.
    Conejo-Garcia, Jose R.
    Wang, Xuefeng
    Yu, Xiaoqing
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 1052 - 1062
  • [45] Accounting for the anisoplanatic point spread function in deep wide-field adaptive optics images
    Cresci, G
    Davies, RI
    Baker, AJ
    Lehnert, MD
    ASTRONOMY & ASTROPHYSICS, 2005, 438 (02) : 757 - 767
  • [46] Deep-Learning-Based Automatic Detection of Photovoltaic Cell Defects in Electroluminescence Images
    Wang, Junjie
    Bi, Li
    Sun, Pengxiang
    Jiao, Xiaogang
    Ma, Xunde
    Lei, Xinyi
    Luo, Yongbin
    SENSORS, 2023, 23 (01)
  • [47] A deep wide-field infrared survey for quasars
    Green, RF
    Croom, S
    Warren, S
    Hall, PB
    Brown, M
    Dey, A
    Jannuzi, B
    Smith, MG
    Norman, D
    Tiede, G
    Smith, PS
    AGN PHYSICS WITH THE SLOAN DIGITAL SKY SURVEY, 2004, 311 : 441 - 444
  • [48] Searching for Subsecond Stellar Variability with Wide-field Star Trails and Deep Learning
    Thomas, David
    Kahn, Steven M.
    ASTROPHYSICAL JOURNAL, 2018, 868 (01):
  • [49] A deep wide-field infrared survey for quasars
    Green, RF
    Croom, S
    Warren, S
    Hall, PB
    Brown, M
    Dey, A
    Jannuzi, B
    Smith, MG
    Norman, D
    Tiede, G
    Smith, PS
    MULTIWAVELENGTH AGN SURVEYS, 2004, : 93 - 94
  • [50] A Deep Framework for Cell Mitosis Detection in Microscopy Images
    Shi, Jian
    Xin, Yi
    Xu, Benlian
    Lu, Mingli
    Cong, Jinliang
    2020 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2020), 2020, : 100 - 103