DEEP LEARNING FOR AUTOMATIC CELL DETECTION IN WIDE-FIELD MICROSCOPY ZEBRAFISH IMAGES

被引:0
|
作者
Dong, Bo [1 ,2 ]
Shao, Ling [4 ]
Da Costa, Marc [3 ]
Bandmann, Oliver [3 ]
Frangi, Alejandro F. [1 ,2 ]
机构
[1] Ctr Computat Imaging & Simulat Technol Biomed CIS, Barcelona, Spain
[2] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, S Yorkshire, England
[3] Univ Sheffield, Dept Neurosci, Sheffield S10 2TN, S Yorkshire, England
[4] Northumbria Univ, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
关键词
CLASSIFICATION; SEGMENTATION; REGIONS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The zebrafish has become a popular experimental model organism for biomedical research. In this paper, a unique framework is proposed for automatically detecting Tyrosine Hydroxylase-containing (TH-labeled) cells in larval zebrafish brain z-stack images recorded through the wide-field microscope. In this framework, a supervised max-pooling Convolutional Neural Network (CNN) is trained to detect cell pixels in regions that are preselected by a Support Vector Machine (SVM) classifier. The results show that the proposed deep-learned method outperforms hand-crafted techniques and demonstrate its potential for automatic cell detection in wide-field microscopy z-stack zebrafish images.
引用
收藏
页码:772 / 776
页数:5
相关论文
共 50 条
  • [21] Deep Learning-based Diagnosis of Glaucoma Using Wide-field Optical Coherence Tomography Images
    Shin, Younji
    Cho, Hyunsoo
    Jeong, Hyo Chan
    Seong, Mincheol
    Choi, Jun-Won
    Lee, Won June
    JOURNAL OF GLAUCOMA, 2021, 30 (09) : 803 - 812
  • [22] Adaptive optics in wide-field microscopy
    Kner, Peter
    Kam, Zvi
    Agard, David
    Sedat, John
    MEMS ADAPTIVE OPTICS V, 2011, 7931
  • [23] Automatic detection, localization and segmentation of nano-particles with deep learning in microscopy images
    Oktay, Ayse Betul
    Gurses, Anil
    MICRON, 2019, 120 : 113 - 119
  • [24] Automatic Vessel Segmentation in Wide-field Retina Images of Infants with Retinopathy of Prematurity
    Poletti, Enea
    Fiorin, Diego
    Grisan, Enrico
    Ruggeri, Alfredo
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 3954 - 3957
  • [25] Data reduction and astrometry strategies for wide-field images:: an application to the Capodimonte Deep Field
    Alcalá, JM
    Radovich, M
    Silvotti, R
    Pannella, M
    Arnaboldi, M
    Capaccioli, M
    Puddu, E
    Rifatto, A
    De Lucia, G
    Mercurio, A
    Napolitano, N
    Grado, A
    Longo, G
    Dall'Ora, M
    Ripepi, V
    Musella, I
    Scaramella, R
    SURVEY AND OTHER TELESCOPE TECHNOLOGIES AND DISCOVERIES, 2002, 4836 : 406 - 417
  • [26] Self-supervised learning on MeerKAT wide-field continuum images
    Lastufka, E.
    Bait, O.
    Taran, O.
    Drozdova, M.
    Kinakh, V.
    Piras, D.
    Audard, M.
    Dessauges-Zavadsky, M.
    Holotyak, T.
    Schaerer, D.
    Voloshynovskiy, S.
    Astronomy and Astrophysics, 2024, 690
  • [27] Anomaly Detection for Wide-Field Images Using Gaze Prediction Module
    Goto K.
    Aizawa H.
    Kato K.
    Harada Y.
    Noguchi M.
    Nishikawa H.
    Kashimura K.
    Hamaya A.
    Ohira T.
    Ihara M.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2021, 87 (12): : 1008 - 1012
  • [28] Full-color optically-sectioned imaging by wide-field microscopy via deep-learning
    Bai, Chen
    Qian, Jia
    Dang, Shipei
    Peng, Tong
    Min, Junwei
    Lei, Ming
    Dan, Dan
    Yao, Baoli
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (05) : 2619 - 2632
  • [29] The NOAO Deep Wide-Field Survey
    Jannuzi, BT
    Dey, A
    HY-REDSHIFT UNIVERSE: GALAXY FORMATION AND EVOLUTION AT HIGH REDSHIFT, 1999, 193 : 258 - 261
  • [30] The NOAO Deep Wide-Field Survey
    Jannuzi, BT
    Dey, A
    PHOTOMETRIC REDSHIFTS AND HIGH REDSHIFT GALAXIES, 1999, 191 : 111 - 116