DEEP LEARNING FOR AUTOMATIC CELL DETECTION IN WIDE-FIELD MICROSCOPY ZEBRAFISH IMAGES

被引:0
|
作者
Dong, Bo [1 ,2 ]
Shao, Ling [4 ]
Da Costa, Marc [3 ]
Bandmann, Oliver [3 ]
Frangi, Alejandro F. [1 ,2 ]
机构
[1] Ctr Computat Imaging & Simulat Technol Biomed CIS, Barcelona, Spain
[2] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, S Yorkshire, England
[3] Univ Sheffield, Dept Neurosci, Sheffield S10 2TN, S Yorkshire, England
[4] Northumbria Univ, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
关键词
CLASSIFICATION; SEGMENTATION; REGIONS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The zebrafish has become a popular experimental model organism for biomedical research. In this paper, a unique framework is proposed for automatically detecting Tyrosine Hydroxylase-containing (TH-labeled) cells in larval zebrafish brain z-stack images recorded through the wide-field microscope. In this framework, a supervised max-pooling Convolutional Neural Network (CNN) is trained to detect cell pixels in regions that are preselected by a Support Vector Machine (SVM) classifier. The results show that the proposed deep-learned method outperforms hand-crafted techniques and demonstrate its potential for automatic cell detection in wide-field microscopy z-stack zebrafish images.
引用
收藏
页码:772 / 776
页数:5
相关论文
共 50 条
  • [31] The NOAO Deep Wide-Field Survey
    Schommer, RA
    Jannuzi, BT
    Dey, A
    NEW ERA OF WIDE FIELD ASTRONOMY, 2001, 232 : 443 - 448
  • [32] THE SPITZER DEEP, WIDE-FIELD SURVEY
    Ashby, M. L. N.
    Stern, D.
    Brodwin, M.
    Griffith, R.
    Eisenhardt, P.
    Kozlowski, S.
    Kochanek, C. S.
    Bock, J. J.
    Borys, C.
    Brand, K.
    Brown, M. J. I.
    Cool, R.
    Cooray, A.
    Croft, S.
    Dey, A.
    Eisenstein, D.
    Gonzalez, A. H.
    Gorjian, V.
    Grogin, N. A.
    Ivison, R. J.
    Jacob, J.
    Jannuzi, B. T.
    Mainzer, A.
    Moustakas, L. A.
    Rottgering, H. J. A.
    Seymour, N.
    Smith, H. A.
    Stanford, S. A.
    Stauffer, J. R.
    Sullivan, I.
    van Breugel, W.
    Willner, S. P.
    Wright, E. L.
    ASTROPHYSICAL JOURNAL, 2009, 701 (01): : 428 - 453
  • [33] Deep Learning Approaches for Head and Operculum Segmentation in Zebrafish Microscopy Images
    Kumar, Navdeep
    Carletti, Alessio
    Gavaia, Paulo J.
    Muller, Marc
    Cancela, M. Leonor
    Geurts, Pierre
    Maree, Raphael
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2021, PT 1, 2021, 13052 : 154 - 164
  • [34] Wide-field and deep galaxy surveys
    Wainscoat, RJ
    DIFFUSE INFRARED RADIATION AND THE IRTS, 1997, 124 : 348 - 355
  • [35] Dendritic cell analysis in wide-field images of the sub-basal nerve plexus by in vivo confocal microscopy
    Badian, Reza A.
    Borgersen, Nora
    Utheim, Tor Paaske
    Lagali, Docent Neil
    ACTA OPHTHALMOLOGICA, 2016, 94 : 10 - 10
  • [36] Combined Detection and Segmentation of Cell Nuclei in Microscopy Images Using Deep Learning
    Ram, Sundaresh
    Nguyen, Vicky T.
    Limesand, Kirsten H.
    Rodriguez, Jeffrey J.
    2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 26 - 29
  • [37] On illumination schemes for wide-field CARS microscopy
    Toytman, I.
    Simanovskii, D.
    Palanker, D.
    OPTICS EXPRESS, 2009, 17 (09): : 7339 - 7347
  • [38] Wide-field photoacoustic-computed microscopy
    Jiang, Bowen
    Yang, Xiaoquan
    Li, Xiangping
    Cao, Yaoyu
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [39] Wide-Field Microscopy using Microcamera Arrays
    Marks, Daniel L.
    Youn, Seo Ho
    Son, Hui S.
    Kim, Jungsang
    Brady, David J.
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XX, 2013, 8589
  • [40] Nanoparticle classification in wide-field interferometric microscopy by supervised learning from model
    Avci, Oguzhan
    Yurdakul, Celalettin
    Unlu, M. Selim
    APPLIED OPTICS, 2017, 56 (15) : 4238 - 4242