Stabilization and Control for the Biharmonic Schrodinger Equation

被引:13
|
作者
Capistrano-Filho, Roberto A. [1 ]
Cavalcante, Marcio [2 ]
机构
[1] Univ Fed Pernambuco UFPE, Dept Matemat, BR-50740545 Recife, PE, Brazil
[2] Univ Fed Alagoas UFAL, Inst Matemat, Maceio, AL, Brazil
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 84卷 / 01期
关键词
Bourgain spaces; Exact controllability; Fourth order nonlinear Schrodinger; Propagation of compactness; Propagation of regularity; Stabilization; EXACT CONTROLLABILITY; WELL-POSEDNESS; GLOBAL-CONTROLLABILITY; BOUNDARY CONTROL; STABILITY;
D O I
10.1007/s00245-019-09640-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to show the global stabilization and exact controllability properties of a fourth order nonlinear Schrodinger system on a periodic domain T with internal control supported on an arbitrary sub-domain of T. More precisely, by certain properties of propagation of compactness and regularity in Bourgain spaces, for the solutions of the associated linear system, we show that the system is globally exponentially stabilizable. This property together with the local exact controllability shows that fourth order nonlinear Schrodinger is globally exactly controllable.
引用
收藏
页码:103 / 144
页数:42
相关论文
共 50 条
  • [1] Stabilization and Control for the Biharmonic Schrödinger Equation
    Roberto A. Capistrano–Filho
    Márcio Cavalcante
    Applied Mathematics & Optimization, 2021, 84 : 103 - 144
  • [2] CONCENTRATION FOR A BIHARMONIC SCHRODINGER EQUATION
    Wang, Dong
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 289 (02) : 469 - 487
  • [3] CONTROL AND STABILIZATION OF THE NONLINEAR SCHRODINGER EQUATION ON RECTANGLES
    Rosier, Lionel
    Zhang, Bing-Yu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (12): : 2293 - 2347
  • [4] Stabilization and control for the nonlinear Schrodinger equation on a compact surface
    Dehman, B.
    Gerard, P.
    Lebeau, G.
    MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (04) : 729 - 749
  • [5] Biharmonic nonlinear Schrodinger equation and the profile decomposition
    Zhu, Shihui
    Zhang, Jian
    Yang, Han
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6244 - 6255
  • [6] SINGULAR SOLUTIONS OF THE BIHARMONIC NONLINEAR SCHRODINGER EQUATION
    Baruch, G.
    Fibich, G.
    Mandelbaum, E.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (08) : 3319 - 3341
  • [7] Blowup for biharmonic Schrodinger equation with critical nonlinearity
    Thanh Viet Phan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [8] Regional stabilization of linear delayed Schrodinger equation by constrained boundary control
    Kang, Wen
    Fridman, Emilia
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3330 - 3335
  • [9] Normalized solutions to biharmonic Schrodinger equation with critical growth in RN
    Liu, Jianlun
    Zhang, Ziheng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [10] LOWER REGULARITY SOLUTIONS OF THE BIHARMONIC SCHRODINGER EQUATION IN A QUARTER PLANE
    Capistrano-Filho, Roberto de A.
    Cavalcante, Marcio
    Gallego, Fernando A.
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 309 (01) : 35 - 70