Stabilization and Control for the Biharmonic Schrodinger Equation

被引:13
|
作者
Capistrano-Filho, Roberto A. [1 ]
Cavalcante, Marcio [2 ]
机构
[1] Univ Fed Pernambuco UFPE, Dept Matemat, BR-50740545 Recife, PE, Brazil
[2] Univ Fed Alagoas UFAL, Inst Matemat, Maceio, AL, Brazil
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 84卷 / 01期
关键词
Bourgain spaces; Exact controllability; Fourth order nonlinear Schrodinger; Propagation of compactness; Propagation of regularity; Stabilization; EXACT CONTROLLABILITY; WELL-POSEDNESS; GLOBAL-CONTROLLABILITY; BOUNDARY CONTROL; STABILITY;
D O I
10.1007/s00245-019-09640-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to show the global stabilization and exact controllability properties of a fourth order nonlinear Schrodinger system on a periodic domain T with internal control supported on an arbitrary sub-domain of T. More precisely, by certain properties of propagation of compactness and regularity in Bourgain spaces, for the solutions of the associated linear system, we show that the system is globally exponentially stabilizable. This property together with the local exact controllability shows that fourth order nonlinear Schrodinger is globally exactly controllable.
引用
收藏
页码:103 / 144
页数:42
相关论文
共 50 条
  • [41] THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE BIHARMONIC SCHRODINGER EQUATION ON THE HALF-LINE
    Ozsari, Turker
    Yolcu, Nermin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (06) : 3285 - 3316
  • [42] Simultaneous control of a rod equation and a simple Schrodinger equation
    Case Western Reserve Univ, Cleveland, United States
    Systems and Control Letters, 1995, 24 (04): : 301 - 306
  • [43] OPTIMAL BOUNDARY CONTROL FOR A SCHRODINGER EQUATION
    Subasi, Murat
    Sener, Sidika Sule
    PACIFIC JOURNAL OF OPTIMIZATION, 2014, 10 (01): : 243 - 254
  • [44] Bilinear optimal control of a Schrodinger equation
    Cancès, E
    Le Bris, C
    Pilot, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (07): : 567 - 571
  • [45] OPTIMAL NONLINEARITY CONTROL OF SCHRODINGER EQUATION
    Wang, Kai
    Zhao, Dun
    Feng, Binhua
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (02): : 317 - 334
  • [46] Control for Schrodinger equation on hyperbolic surfaces
    Jin, Long
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) : 1865 - 1877
  • [47] Controller design to stabilization of Schrodinger equation with boundary input disturbance
    Cui, Haoyue
    Han, Zhongjie
    Xu, Genqi
    APPLICABLE ANALYSIS, 2020, 99 (05) : 796 - 813
  • [48] Stabilization of the higher order nonlinear Schrodinger equation with constant coefficients
    Chen, Mo
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (03):
  • [49] Stabilization for Schrodinger equation with a distributed time delay in the boundary input
    Cui, Haoyue
    Xu, Genqi
    Chen, Yunlan
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2019, 36 (04) : 1305 - 1324