Stabilization and Control for the Biharmonic Schrodinger Equation

被引:13
|
作者
Capistrano-Filho, Roberto A. [1 ]
Cavalcante, Marcio [2 ]
机构
[1] Univ Fed Pernambuco UFPE, Dept Matemat, BR-50740545 Recife, PE, Brazil
[2] Univ Fed Alagoas UFAL, Inst Matemat, Maceio, AL, Brazil
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 84卷 / 01期
关键词
Bourgain spaces; Exact controllability; Fourth order nonlinear Schrodinger; Propagation of compactness; Propagation of regularity; Stabilization; EXACT CONTROLLABILITY; WELL-POSEDNESS; GLOBAL-CONTROLLABILITY; BOUNDARY CONTROL; STABILITY;
D O I
10.1007/s00245-019-09640-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to show the global stabilization and exact controllability properties of a fourth order nonlinear Schrodinger system on a periodic domain T with internal control supported on an arbitrary sub-domain of T. More precisely, by certain properties of propagation of compactness and regularity in Bourgain spaces, for the solutions of the associated linear system, we show that the system is globally exponentially stabilizable. This property together with the local exact controllability shows that fourth order nonlinear Schrodinger is globally exactly controllable.
引用
收藏
页码:103 / 144
页数:42
相关论文
共 50 条
  • [11] Stabilization of the Fourth Order Schrodinger Equation
    Aksas, Belkacem
    Rebiai, Salah-Eddine
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 529 - 535
  • [12] Stabilization of Schrodinger equation in exterior domains
    Aloui, Lassaad
    Khenissi, Moez
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (03) : 570 - 579
  • [13] Stabilization of the interconnected Schrodinger and wave equations with only boundary control at the wave equation
    Wang, Jun-Min
    Wang, Fei
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1208 - 1213
  • [14] POSITIVE AND NEGATIVE EXACT CONTROLLABILITY RESULTS FOR THE LINEAR BIHARMONIC SCHRODINGER EQUATION
    Ammari, Kais
    Bouzidi, Hedi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1158 - 1167
  • [15] Ring-type singular solutions of the biharmonic nonlinear Schrodinger equation
    Baruch, G.
    Fibich, G.
    Mandelbaum, E.
    NONLINEARITY, 2010, 23 (11) : 2867 - 2887
  • [16] Exact Boundary Controllability of the Linear Biharmonic Schrodinger Equation with Variable Coefficients
    Ammari, Kais
    Bouzidi, Hedi
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (03) : 703 - 719
  • [17] Error Estimates of Finite Difference Methods for the Biharmonic Nonlinear Schrodinger Equation
    Ma, Ying
    Zhang, Teng
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (01)
  • [18] Global solutions for Hs-critical nonlinear biharmonic Schrodinger equation
    Liu, Xuan
    Zhang, Ting
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (05):
  • [19] Infinite memory effects on the stabilization of a biharmonic Schrödinger equation
    Capistrano-Filho, Roberto A.
    de Jesus, Isadora Maria
    Martinez, Victor Hugo Gonzalez
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (39) : 1 - 23
  • [20] Construction of high-energy solutions for the supercritical biharmonic Schrodinger equation
    Gan, Lu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (03) : 883 - 891