On a dynamical Mordell-Lang conjecture for coherent sheaves

被引:3
|
作者
Bell, Jason P. [1 ]
Satriano, Matthew [1 ]
Sierra, Susan J. [2 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
P-ADIC NUMBERS; POWER-SERIES; RINGS; AREA;
D O I
10.1112/jlms.12050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a dynamical Mordell-Lang-type conjecture for coherent sheaves. When the sheaves are structure sheaves of closed subschemes, our conjecture becomes a statement about unlikely intersections. We prove an analogue of this conjecture for affinoid spaces, which we then use to prove our conjecture in the case of surfaces. These results rely on a module-theoretic variant of Strassman's theorem that we prove in the appendix.
引用
收藏
页码:28 / 46
页数:19
相关论文
共 50 条
  • [41] Generic borne for the Mordell-Lang problem
    Rémond, G
    MANUSCRIPTA MATHEMATICA, 2005, 118 (01) : 85 - 97
  • [42] Intersections of polynomial orbits, and a dynamical Mordell–Lang conjecture
    Dragos Ghioca
    Thomas J. Tucker
    Michael E. Zieve
    Inventiones mathematicae, 2008, 171 : 463 - 483
  • [43] Uniform Mordell-Lang Plus Bogomolov
    Ge, Tangli
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (09) : 7360 - 7378
  • [44] The isotrivial case in the mordell-lang theorem
    Ghioca, Dragos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (07) : 3839 - 3856
  • [45] The Mordell-Lang theorem for Drinfeld modules
    Ghioca, D
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (53) : 3273 - 3307
  • [46] THE MORDELL-LANG CONJECTURE FOR SEMIABELIAN VARIETIES DEFINED OVER FIELDS OF POSITIVE CHARACTERISTIC
    Ghioca, Dragos
    Yang, She
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (02) : 254 - 264
  • [47] Dynamical Mordell–Lang conjecture for totally inseparable liftings of Frobenius
    She Yang
    Mathematische Annalen, 2024, 389 : 1639 - 1656
  • [48] The Mordell-Lang question for endomorphisms of semiabelian varieties
    Ghioca, Dragos
    Tucker, Thomas
    Zieve, Michael E.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (03): : 645 - 666
  • [49] Effective Isotrivial Mordell-Lang in Positive Characteristic
    Bell, Jason
    Ghioca, Dragos
    Moosa, Rahim
    AMERICAN JOURNAL OF MATHEMATICS, 2025, 147 (02)
  • [50] THE UNIFORM MORDELL–LANG CONJECTURE
    Gao, Ziyang
    Ge, Tangli
    Kühne, Lars
    arXiv, 2021,