On a dynamical Mordell-Lang conjecture for coherent sheaves

被引:3
|
作者
Bell, Jason P. [1 ]
Satriano, Matthew [1 ]
Sierra, Susan J. [2 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
P-ADIC NUMBERS; POWER-SERIES; RINGS; AREA;
D O I
10.1112/jlms.12050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a dynamical Mordell-Lang-type conjecture for coherent sheaves. When the sheaves are structure sheaves of closed subschemes, our conjecture becomes a statement about unlikely intersections. We prove an analogue of this conjecture for affinoid spaces, which we then use to prove our conjecture in the case of surfaces. These results rely on a module-theoretic variant of Strassman's theorem that we prove in the appendix.
引用
收藏
页码:28 / 46
页数:19
相关论文
共 50 条
  • [21] THE DYNAMICAL MORDELL-LANG PROBLEM FOR NOETHERIAN SPACES
    Bell, Jason P.
    Ghioca, Dragos
    Tucker, Thomas J.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2015, 53 (02) : 313 - 328
  • [22] Explicit height bounds and the effective Mordell-Lang Conjecture
    Viada, Evelina
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2016, 7 (01): : 101 - 131
  • [23] Towards the Full Mordell-Lang Conjecture for Drinfeld Modules
    Ghioca, Dragos
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (01): : 95 - 101
  • [24] Height gap conjectures, D-finiteness, and a weak dynamical Mordell-Lang conjecture
    Bell, Jason P.
    Hu, Fei
    Satriano, Matthew
    MATHEMATISCHE ANNALEN, 2020, 378 (3-4) : 971 - 992
  • [25] THE DYNAMICAL MORDELL-LANG PROBLEM FOR ETALE MAPS
    Bell, J. P.
    Ghioca, D.
    Tucker, T. J.
    AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (06) : 1655 - 1675
  • [26] Dynamical Mordell-Lang and automorphisms of blow-ups
    Lesieutre, John
    Litt, Daniel
    ALGEBRAIC GEOMETRY, 2019, 6 (01): : 1 - 25
  • [27] A case of the dynamical Mordell–Lang conjecture
    Robert L. Benedetto
    Dragos Ghioca
    Pär Kurlberg
    Thomas J. Tucker
    Mathematische Annalen, 2012, 352 : 1 - 26
  • [28] The dynamical Mordell-Lang problem for intersection of two orbits
    Rout, Sudhansu Sekhar
    JOURNAL OF NUMBER THEORY, 2020, 207 : 122 - 137
  • [29] Infinitesimal Mordell-Lang
    Buium, A
    JOURNAL OF NUMBER THEORY, 2001, 90 (02) : 185 - 206
  • [30] Mordell-Lang conjecture for function fields in characteristic zero, revisited
    Pillay, A
    COMPOSITIO MATHEMATICA, 2004, 140 (01) : 64 - 68