THE DYNAMICAL MORDELL-LANG PROBLEM FOR ETALE MAPS

被引:0
|
作者
Bell, J. P. [1 ]
Ghioca, D. [2 ]
Tucker, T. J. [3 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Univ Rochester, Dept Math, Rochester, NY 14627 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a dynamical version of the Mordell Lang conjecture for etale endomorphisms of quasiprojective varieties We use p attic methods inspired by the work of Skolem Mahler and Lech combined with methods from algebraic geometry As special cases of our result we obtain a new proof of the classical Mordell Lang conjecture for cyclic subgroups of a semiabelian variety and we also answer positively a question of Keeler/Rogalski/Stafford for critically dense sequences of closed points of a Noetherian Integral scheme
引用
收藏
页码:1655 / 1675
页数:21
相关论文
共 50 条
  • [1] Periodic points, linearizing maps, and the dynamical Mordell-Lang problem
    Ghioca, D.
    Tucker, T. J.
    JOURNAL OF NUMBER THEORY, 2009, 129 (06) : 1392 - 1403
  • [2] THE DYNAMICAL MORDELL-LANG PROBLEM FOR NOETHERIAN SPACES
    Bell, Jason P.
    Ghioca, Dragos
    Tucker, Thomas J.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2015, 53 (02) : 313 - 328
  • [3] The dynamical Mordell-Lang problem for intersection of two orbits
    Rout, Sudhansu Sekhar
    JOURNAL OF NUMBER THEORY, 2020, 207 : 122 - 137
  • [4] On the quantitative dynamical Mordell-Lang conjecture
    Ostafe, Alina
    Sha, Min
    JOURNAL OF NUMBER THEORY, 2015, 156 : 161 - 182
  • [5] A DYNAMICAL MORDELL-LANG PROPERTY ON THE DISK
    Wang, Ming-Xi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (03) : 2183 - 2204
  • [6] A case of the dynamical Mordell-Lang conjecture
    Benedetto, Robert L.
    Ghioca, Dragos
    Kurlberg, Par
    Tucker, Thomas J.
    MATHEMATISCHE ANNALEN, 2012, 352 (01) : 1 - 26
  • [7] Generic borne for the Mordell-Lang problem
    Rémond, G
    MANUSCRIPTA MATHEMATICA, 2005, 118 (01) : 85 - 97
  • [8] On a dynamical Mordell-Lang conjecture for coherent sheaves
    Bell, Jason P.
    Satriano, Matthew
    Sierra, Susan J.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 28 - 46
  • [9] THE DYNAMICAL MORDELL-LANG CONJECTURE IN POSITIVE CHARACTERISTIC
    Ghioca, Dragos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 1151 - 1167
  • [10] Dynamical Mordell-Lang and automorphisms of blow-ups
    Lesieutre, John
    Litt, Daniel
    ALGEBRAIC GEOMETRY, 2019, 6 (01): : 1 - 25