THE DYNAMICAL MORDELL-LANG PROBLEM FOR ETALE MAPS

被引:0
|
作者
Bell, J. P. [1 ]
Ghioca, D. [2 ]
Tucker, T. J. [3 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Univ Rochester, Dept Math, Rochester, NY 14627 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a dynamical version of the Mordell Lang conjecture for etale endomorphisms of quasiprojective varieties We use p attic methods inspired by the work of Skolem Mahler and Lech combined with methods from algebraic geometry As special cases of our result we obtain a new proof of the classical Mordell Lang conjecture for cyclic subgroups of a semiabelian variety and we also answer positively a question of Keeler/Rogalski/Stafford for critically dense sequences of closed points of a Noetherian Integral scheme
引用
收藏
页码:1655 / 1675
页数:21
相关论文
共 50 条
  • [41] A combination of the conjectures of Mordell-Lang and Andre-Oort
    Pink, R
    GEOMETRIC METHODS IN ALGEBRA AND NUMBER THEORY, 2005, 235 : 251 - 282
  • [42] On function field Mordell-Lang and Manin-Mumford
    Benoist, Franck
    Bouscaren, Elisabeth
    Pillay, Anand
    JOURNAL OF MATHEMATICAL LOGIC, 2016, 16 (01)
  • [43] Explicit height bounds and the effective Mordell-Lang Conjecture
    Viada, Evelina
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2016, 7 (01): : 101 - 131
  • [44] Towards the Full Mordell-Lang Conjecture for Drinfeld Modules
    Ghioca, Dragos
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (01): : 95 - 101
  • [45] THE DYNAMICAL MORDELL-LANG CONJECTURE FOR ENDOMORPHISMS OF SEMIABELIAN VARIETIES DEFINED OVER FIELDS OF POSITIVE CHARACTERISTIC
    Corvaja, Pietro
    Ghioca, Dragos
    Scanlon, Thomas
    Zannier, Umberto
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (02) : 669 - 698
  • [46] Mordell-Lang conjecture for function fields in characteristic zero, revisited
    Pillay, A
    COMPOSITIO MATHEMATICA, 2004, 140 (01) : 64 - 68
  • [47] TOWARD A PROOF OF THE MORDELL-LANG CONJECTURE IN CHARACTERISTIC-P
    ABRAMOVICH, D
    VOLOCH, JF
    DUKE MATHEMATICAL JOURNAL, 1992, 66 (02) : 103 - 115
  • [48] On function field Mordell-Lang: the semiabelian case and the socle theorem
    Benoist, Franck
    Bouscaren, Elisabeth
    Pillay, Anand
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 116 : 182 - 208
  • [49] On the Manin-Mumford and Mordell-Lang conjectures in positive characteristic
    Roessler, Damian
    ALGEBRA & NUMBER THEORY, 2013, 7 (08) : 2039 - 2057
  • [50] A case of the dynamical Mordell–Lang conjecture
    Robert L. Benedetto
    Dragos Ghioca
    Pär Kurlberg
    Thomas J. Tucker
    Mathematische Annalen, 2012, 352 : 1 - 26