THE DYNAMICAL MORDELL-LANG PROBLEM FOR ETALE MAPS

被引:0
|
作者
Bell, J. P. [1 ]
Ghioca, D. [2 ]
Tucker, T. J. [3 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Univ Rochester, Dept Math, Rochester, NY 14627 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a dynamical version of the Mordell Lang conjecture for etale endomorphisms of quasiprojective varieties We use p attic methods inspired by the work of Skolem Mahler and Lech combined with methods from algebraic geometry As special cases of our result we obtain a new proof of the classical Mordell Lang conjecture for cyclic subgroups of a semiabelian variety and we also answer positively a question of Keeler/Rogalski/Stafford for critically dense sequences of closed points of a Noetherian Integral scheme
引用
收藏
页码:1655 / 1675
页数:21
相关论文
共 50 条