THE UNIFORM MORDELL–LANG CONJECTURE

被引:0
|
作者
Gao, Ziyang [1 ]
Ge, Tangli [2 ]
Kühne, Lars [3 ]
机构
[1] Institute of Algebra, Number Theory and Discrete Mathematics, Leibniz University Hannover, Welfengarten 1, Hannover,30167, Germany
[2] Department of Mathematics, Princeton University, Princeton,NJ,08544, United States
[3] Institut for Matematiske Fag, Universitetsparken 5, København Ø,2100, Denmark
来源
arXiv | 2021年
关键词
921.1 Algebra - 921.6 Numerical Methods;
D O I
暂无
中图分类号
学科分类号
摘要
Curve fitting
引用
收藏
相关论文
共 50 条
  • [1] A variant of the Mordell-Lang conjecture
    Ghioca, Dragos
    Hu, Fei
    Scanlon, Thomas
    Zannier, Umberto
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (05) : 1383 - 1392
  • [2] A case of the dynamical Mordell–Lang conjecture
    Robert L. Benedetto
    Dragos Ghioca
    Pär Kurlberg
    Thomas J. Tucker
    Mathematische Annalen, 2012, 352 : 1 - 26
  • [3] The Mordell-Lang conjecture for function fields
    Hrushovski, E
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) : 667 - 690
  • [4] ON A UNIFORM BOUND FOR THE NUMBER OF EXCEPTIONAL LINEAR SUBVARIETIES IN THE DYNAMICAL MORDELL-LANG CONJECTURE
    Silverman, Joseph H.
    Viray, Bianca
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (03) : 547 - 566
  • [5] On the quantitative dynamical Mordell-Lang conjecture
    Ostafe, Alina
    Sha, Min
    JOURNAL OF NUMBER THEORY, 2015, 156 : 161 - 182
  • [6] A case of the dynamical Mordell-Lang conjecture
    Benedetto, Robert L.
    Ghioca, Dragos
    Kurlberg, Par
    Tucker, Thomas J.
    MATHEMATISCHE ANNALEN, 2012, 352 (01) : 1 - 26
  • [7] On a dynamical Mordell-Lang conjecture for coherent sheaves
    Bell, Jason P.
    Satriano, Matthew
    Sierra, Susan J.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 28 - 46
  • [8] Uniform Mordell-Lang Plus Bogomolov
    Ge, Tangli
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (09) : 7360 - 7378
  • [9] Intersections of polynomial orbits, and a dynamical Mordell–Lang conjecture
    Dragos Ghioca
    Thomas J. Tucker
    Michael E. Zieve
    Inventiones mathematicae, 2008, 171 : 463 - 483
  • [10] THE DYNAMICAL MORDELL-LANG CONJECTURE IN POSITIVE CHARACTERISTIC
    Ghioca, Dragos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 1151 - 1167