Control of spiral turbulence by periodic forcing in a reaction-diffusion system with gradients

被引:8
|
作者
Wu, Yabi [1 ]
Qiao, Chun [1 ]
Qi Ouyang [1 ,2 ,3 ]
Wang, HongLi [1 ,2 ,3 ]
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Beijing Hong Kong Singapore Joint Ctr Nonlinear &, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr Theoret Biol, Beijing 100871, Peoples R China
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 03期
关键词
D O I
10.1103/PhysRevE.77.036226
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report an experimental result on successfully controlling spiral turbulence in a reaction-diffusion system. The control is realized by periodic forcing in a three-dimensional Belousov-Zhabotinsky reaction-diffusion system, which has chemical concentration gradients in the third dimension. We observe that, in the oscillatory regime of the system, a suitable periodic forcing may stabilize scroll waves (SWs), which otherwise undergo a transition to spiral turbulence. Relating the spiral phase shift due to gradients and the forcing frequency, the mechanism of the control can be well understood by modulating the phase twist of SWs. We use the FitzHugh-Nagumo model to demonstrate this mechanism.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Periodic solutions of a three-species periodic reaction-diffusion system
    Qiao, Tiantian
    Sun, Jiebao
    Wu, Boying
    [J]. ANNALES POLONICI MATHEMATICI, 2011, 100 (02) : 179 - 191
  • [22] Spiral wave behaviors in an excitable reaction-diffusion system on a sphere
    Yagisita, H
    Mimura, M
    Yamada, M
    [J]. PHYSICA D, 1998, 124 (1-3): : 126 - 136
  • [23] SPIRAL WAVES IN REACTION-DIFFUSION EQUATIONS
    HAGAN, PS
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (04) : 762 - 786
  • [24] Transition from spiral waves to defect-mediated turbulence induced by gradient effects in a reaction-diffusion system
    Zhang, CX
    Zhang, H
    Ouyang, Q
    Hu, BB
    Gunaratne, GH
    [J]. PHYSICAL REVIEW E, 2003, 68 (03):
  • [25] Propagation and refraction of chemical waves generated by local periodic forcing in a reaction-diffusion model
    Zhang, Renwu
    Yang, Lingfa
    Zhabotinsky, Anatol M.
    Epstein, Irving R.
    [J]. PHYSICAL REVIEW E, 2007, 76 (01):
  • [26] REACTION-DIFFUSION SYSTEM WITH BRUSSELATOR KINETICS - CONTROL OF A QUASI-PERIODIC ROUTE TO CHAOS
    CHAKRAVARTI, S
    MAREK, M
    RAY, WH
    [J]. PHYSICAL REVIEW E, 1995, 52 (03) : 2407 - 2423
  • [27] On the Regional Control of a Reaction-Diffusion System SIR
    El Alami Laaroussi, Adil
    Rachik, Mostafa
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2019, 82 (01)
  • [28] Optical Control of a Biological Reaction-Diffusion System
    Glock, Philipp
    Broichhagen, Johannes
    Kretschmer, Simon
    Blumhardt, Philipp
    Muecksch, Jonas
    Trauner, Dirk
    Schwille, Petra
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (09) : 2362 - 2366
  • [29] The existence, uniqueness and stability of positive periodic solution for periodic reaction-diffusion system
    Liu Yingdong
    Li Zhengyuan
    Ye Qixiao
    [J]. Acta Mathematicae Applicatae Sinica, 2001, 17 (1) : 1 - 13
  • [30] Resonance induced by a spatially periodic force in the reaction-diffusion system
    Yao, Chenggui
    He, Zhiwei
    Luo, JinMing
    Shuai, Jianwei
    [J]. PHYSICAL REVIEW E, 2015, 91 (05):