Propagation and refraction of chemical waves generated by local periodic forcing in a reaction-diffusion model

被引:80
|
作者
Zhang, Renwu
Yang, Lingfa
Zhabotinsky, Anatol M.
Epstein, Irving R.
机构
[1] So Utah Univ, Dept Phys Sci, Cedar City, UT 84720 USA
[2] Brandeis Univ, Dept Chem, Waltham, MA 02454 USA
[3] Brandeis Univ, Volen Ctr Complex Syst, Waltham, MA 02454 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 01期
关键词
D O I
10.1103/PhysRevE.76.016201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study wave propagation, interaction, and transmission across the boundary between two chemical media in a model of an oscillatory reaction-diffusion medium subjected to local periodic forcing. The forced waves can be either outwardly (OP) or inwardly propagating (IP), depending on the dispersion of the medium. Competition among forced waves, spontaneous spiral waves, and bulk oscillations is studied for both cases. We demonstrate development of a negatively refracted wave train when forced waves traverse the boundary between the OP medium and the IP medium.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Front propagation under periodic forcing in reaction-diffusion systems
    E. P. Zemskov
    K. Kassner
    S. C. Müller
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 34 : 285 - 292
  • [2] Front propagation under periodic forcing in reaction-diffusion systems
    Zemskov, EP
    Kassner, K
    Müller, SC
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2003, 34 (03): : 285 - 292
  • [3] Refraction of active waves in reaction-diffusion media
    Yamada, H
    Matsuoka, C
    Yoshimori, A
    [J]. PHYSICS LETTERS A, 1996, 210 (03) : 189 - 194
  • [4] EXISTENCE AND NONEXISTENCE OF TRAVELING WAVES AND REACTION-DIFFUSION FRONT PROPAGATION IN PERIODIC MEDIA
    XIN, JX
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) : 893 - 926
  • [5] PERSISTENCE AND PROPAGATION IN PERIODIC REACTION-DIFFUSION MODELS
    Hamel, Francois
    Roques, Lionel
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (03): : 217 - 228
  • [6] QUANTITATIVE PROPAGATION OF CHAOS IN A BIMOLECULAR CHEMICAL REACTION-DIFFUSION MODEL
    Lim, Tau Shean
    Lu, Yulong
    Nolen, James H.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 2098 - 2133
  • [7] PROPAGATION PROPERTIES OF REACTION-DIFFUSION EQUATIONS IN PERIODIC DOMAINS
    Ducasse, Romain
    [J]. ANALYSIS & PDE, 2020, 13 (08): : 2259 - 2288
  • [8] Propagation dynamics for a time-periodic reaction-diffusion SI epidemic model with periodic recruitment
    Zhao, Lin
    Wang, Zhi-Cheng
    Zhang, Liang
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [9] Periodic traveling waves in a reaction-diffusion model with chemotaxis and nonlocal delay effect
    Li, Dong
    Guo, Shangjiang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (02) : 1080 - 1099
  • [10] TRAVELING WAVES AND FINITE PROPAGATION IN A REACTION-DIFFUSION EQUATION
    DEPABLO, A
    VAZQUEZ, JL
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) : 19 - 61