Zero-Hopf bifurcation for van der Pol's oscillator with delayed feedback

被引:15
|
作者
Wu, Xiaoqin [1 ]
Wang, Liancheng [2 ]
机构
[1] Mississippi Valley State Univ, Dept MCIS, Itta Bena, MS 39762 USA
[2] Kennesaw State Univ, Dept Math & Stat, Kennesaw, GA 30144 USA
关键词
Van der Pol oscillator; Normal form; Zero-Hopf bifurcation; FUNCTIONAL-DIFFERENTIAL EQUATIONS; BOGDANOV-TAKENS SINGULARITY; PERIODIC-SOLUTIONS; NORMAL FORMS; TIME-DELAY; STABILITY;
D O I
10.1016/j.cam.2010.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dynamical behaviors of the following van der Pol oscillator with delay (sic) + epsilon(x(2) - 1)(x) over dot + x = epsilon g(x(t - tau)). In the case that its associated characteristic equation has a simple zero root and a pair of purely imaginary roots (zero-Hopf singularity), the normal form is obtained by performing a center manifold reduction and by using the normal form theory developed by Faria and Magalhaes. A critical value epsilon(0) of epsilon in (0, root 2) is obtained to predict the bifurcation diagrams from which saddle-node bifurcation, pitchfork bifurcation, Hopf bifurcation (the existence and stability of the periodic solutions), and heteroclinic bifurcation are determined. Some examples are given to confirm the theoretical results. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2586 / 2602
页数:17
相关论文
共 50 条
  • [41] Zero-Hopf bifurcation in a Chua system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 31 - 40
  • [42] Bifurcation and stability analysis of commensurate fractional-order van der Pol oscillator with time-delayed feedback
    Chen, Jufeng
    Shen, Yongjun
    Li, Xianghong
    Yang, Shaopu
    Wen, Shaofang
    INDIAN JOURNAL OF PHYSICS, 2020, 94 (10) : 1615 - 1624
  • [43] Bifurcation and stability analysis of commensurate fractional-order van der Pol oscillator with time-delayed feedback
    Jufeng Chen
    Yongjun Shen
    Xianghong Li
    Shaopu Yang
    Shaofang Wen
    Indian Journal of Physics, 2020, 94 : 1615 - 1624
  • [44] Hopf bifurcation due to delay in the van der Pol equations
    Honda, Katsuya
    Agata, Furniki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (03)
  • [45] Hopf bifurcation in a kind of stochastic van der Pol system
    Ma Shao-Juan
    ACTA PHYSICA SINICA, 2011, 60 (01)
  • [46] Stochastic Hopf bifurcation in a biased van der Pol model
    Leung, HK
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 254 (1-2) : 146 - 155
  • [47] Hopf Bifurcation of Compound Stochastic van der Pol System
    Ma, Shaojuan
    Zhang, Qianling
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [48] Hopf and Zero-Hopf Bifurcation Analysis for a Chaotic System
    Husien, Ahmad Muhamad
    Amen, Azad Ibrahim
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (08):
  • [49] A tame degenerate Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator
    Algaba, A
    Freire, E
    Gamero, E
    Rodríguez-Luis, AJ
    NONLINEAR DYNAMICS, 2000, 22 (03) : 249 - 269
  • [50] VAN DER POL OSCILLATOR WITH DELAYED AMPLITUDE LIMITING
    NAYFEH, AH
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1967, 55 (01): : 111 - &