Zero-Hopf bifurcation for van der Pol's oscillator with delayed feedback

被引:15
|
作者
Wu, Xiaoqin [1 ]
Wang, Liancheng [2 ]
机构
[1] Mississippi Valley State Univ, Dept MCIS, Itta Bena, MS 39762 USA
[2] Kennesaw State Univ, Dept Math & Stat, Kennesaw, GA 30144 USA
关键词
Van der Pol oscillator; Normal form; Zero-Hopf bifurcation; FUNCTIONAL-DIFFERENTIAL EQUATIONS; BOGDANOV-TAKENS SINGULARITY; PERIODIC-SOLUTIONS; NORMAL FORMS; TIME-DELAY; STABILITY;
D O I
10.1016/j.cam.2010.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dynamical behaviors of the following van der Pol oscillator with delay (sic) + epsilon(x(2) - 1)(x) over dot + x = epsilon g(x(t - tau)). In the case that its associated characteristic equation has a simple zero root and a pair of purely imaginary roots (zero-Hopf singularity), the normal form is obtained by performing a center manifold reduction and by using the normal form theory developed by Faria and Magalhaes. A critical value epsilon(0) of epsilon in (0, root 2) is obtained to predict the bifurcation diagrams from which saddle-node bifurcation, pitchfork bifurcation, Hopf bifurcation (the existence and stability of the periodic solutions), and heteroclinic bifurcation are determined. Some examples are given to confirm the theoretical results. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2586 / 2602
页数:17
相关论文
共 50 条
  • [31] Hopf-Type Bifurcation and Synchronization of a Fractional Order Van der Pol Oscillator
    Xiao Min
    Zheng Wei Xing
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 193 - 198
  • [32] Hopf bifurcation for a fractional van der Pol oscillator and applications to aerodynamics: implications in flutter
    Juarez, Gerardo
    Ramirez-Trocherie, Marcel-Andre
    Baez, Angel
    Lobato, Alan
    Iglesias-Rodriguez, Ernesto
    Padilla, Pablo
    Rodriguez-Ramos, Reinaldo
    JOURNAL OF ENGINEERING MATHEMATICS, 2023, 139 (01)
  • [33] Hopf bifurcation for a fractional van der Pol oscillator and applications to aerodynamics: implications in flutter
    Gerardo Juárez
    Marcel-André Ramírez-Trocherie
    Ángel Báez
    Alan Lobato
    Ernesto Iglesias-Rodríguez
    Pablo Padilla
    Reinaldo Rodríguez-Ramos
    Journal of Engineering Mathematics, 2023, 139
  • [34] Bifurcation threshold of the delayed van der Pol oscillator under stochastic modulation
    Gaudreault, Mathieu
    Drolet, Francois
    Vinals, Jorge
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [35] Multiple scales scheme for bifurcation in a delayed extended van der Pol oscillator
    Huang, Chengdai
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 490 : 643 - 652
  • [36] Hopf bifurcation of hybrid Van der Pol oscillators
    Herrera, Leonardo
    Montano, Oscar
    Orlov, Yury
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2017, 26 : 225 - 238
  • [37] A Tame Degenerate Hopf-Pitchfork Bifurcation in a Modified van der Pol–Duffing Oscillator
    A. Algaba
    E. Freire
    E. Gamero
    A. J. Rodríguez-Luis
    Nonlinear Dynamics, 2000, 22 : 249 - 269
  • [38] Delay effect on the relaxation oscillations of a van der Pol oscillator with delayed feedback
    Zheng, Yuanguang
    Huang, Chengdai
    Wang, Zaihua
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (01): : 148 - 157
  • [39] BIFURCATION STRUCTURE OF THE DRIVEN VAN DER POL OSCILLATOR
    Mettin, R.
    Parlitz, U.
    Lauterborn, W.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06): : 1529 - 1555
  • [40] Zero-Hopf bifurcation analysis in delayed differential equations with two delays
    Wu, Xiaoqin P.
    Wang, Liancheng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (03): : 1484 - 1513