GLOBAL WELL-POSEDNESS OF THE RELATIVISTIC BOLTZMANN EQUATION

被引:8
|
作者
Wang, Yong [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Huairou 101488, Peoples R China
关键词
relativistic Boltzmann equation; relativistic Maxwellian; Lorentz transformation; asymptotic behavior; large amplitude oscillations; LANDAU-MAXWELL SYSTEM; ASYMPTOTIC STABILITY; CLASSICAL-SOLUTIONS; ANGULAR CUTOFF; CAUCHY-PROBLEM; WHOLE SPACE; EXPONENTIAL DECAY; NEWTONIAN LIMIT; SOFT POTENTIALS; TIME DECAY;
D O I
10.1137/17M112600X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the global existence and uniqueness of a mild solution to the relativistic Boltzmann equation both in the whole space and in torus for a class of initial data with bounded velocity-weighted L-infinity-norm and some smallness on (LxLp infinity)-L-1-norm as well as on defect mass, energy, and entropy. Moreover, the asymptotic stability of the solutions is also investigated in the case of torus.
引用
收藏
页码:5637 / 5694
页数:58
相关论文
共 50 条
  • [41] GLOBAL WELL-POSEDNESS OF THE STOCHASTIC CAMASSA-HOLM EQUATION
    Chen, Yong
    Duan, Jinqiao
    Gao, Hongjun
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (03) : 607 - 627
  • [42] Global well-posedness for strongly damped viscoelastic wave equation
    Xu, Runzhang
    Yang, Yanbing
    Liu, Yacheng
    [J]. APPLICABLE ANALYSIS, 2013, 92 (01) : 138 - 157
  • [43] Correction: Global well-posedness for the KP-I equation
    L. Molinet
    J. C. Saut
    N. Tzvetkov
    [J]. Mathematische Annalen, 2004, 328 : 707 - 710
  • [44] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    Yang, Lingyan
    Li, Xiaoguang
    Wu, Yonghong
    Caccetta, Louis
    [J]. ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 941 - 948
  • [45] Sharp global well-posedness for a higher order Schrodinger equation
    Carvajal, X
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (01) : 53 - 70
  • [46] Global Well-posedness for the Fifth-order mKdV Equation
    Xin Jun GAO
    [J]. Acta Mathematica Sinica,English Series, 2018, (06) : 1015 - 1027
  • [47] Global well-posedness for the derivative nonlinear Schrödinger equation
    Hajer Bahouri
    Galina Perelman
    [J]. Inventiones mathematicae, 2022, 229 : 639 - 688
  • [48] On the well-posedness of the Eckhaus equation
    [J]. Phys Lett Sect A Gen At Solid State Phys, 5-6 (319):
  • [49] Global well-posedness for the Schrodinger equation coupled to a nonlinear oscillator
    Komech, A. I.
    Komech, A. A.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2007, 14 (02) : 164 - 173
  • [50] ON GLOBAL WELL-POSEDNESS OF THE MODIFIED KDV EQUATION IN MODULATION SPACES
    Oh, Tadahiro
    Wang, Yuzhao
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (06) : 2971 - 2992