GLOBAL WELL-POSEDNESS OF THE STOCHASTIC CAMASSA-HOLM EQUATION

被引:0
|
作者
Chen, Yong [1 ]
Duan, Jinqiao [2 ]
Gao, Hongjun [3 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
[2] IIT, Dept Appl Math, Chicago, IL 60616 USA
[3] Southeast Univ, Sch Math, Nanjing 211189, Jiangsu, Peoples R China
关键词
stochastic Camassa-Holm equation; martingale solutions; regularization; tightness; SHALLOW-WATER EQUATION; WEAK SOLUTIONS; CONSERVATIVE SOLUTIONS; DISSIPATIVE SOLUTIONS; BREAKING WAVES; REGULARIZATION; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of global martingale solutions of the stochastic Camassa-Holm equation in H-1(R). The construction of the solution is based on the regularization method and the stochastic compactness method. Furthermore, we use Borel-Cantelli Lemma to prove the global existence of mild solution of the stochastic Camassa-Holm equation with small noise in L-2(R).
引用
收藏
页码:607 / 627
页数:21
相关论文
共 50 条
  • [1] Well-posedness for stochastic Camassa-Holm equation
    Chen, Yong
    Gao, Hongjun
    Guo, Boling
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) : 2353 - 2379
  • [2] Global well-posedness for the viscous Camassa-Holm equation
    Lim, Wee Keong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) : 432 - 442
  • [3] A note on well-posedness for Camassa-Holm equation
    Danchin, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (02) : 429 - 444
  • [4] Well-posedness for the stochastic higher order modified Camassa-Holm equation
    Chen, Yong
    Shi, Lei
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 102 : 242 - 250
  • [5] Well-posedness and Large Deviations of the Stochastic Modified Camassa-Holm Equation
    Yong Chen
    Hongjun Gao
    [J]. Potential Analysis, 2016, 45 : 331 - 354
  • [6] Well-posedness and Large Deviations of the Stochastic Modified Camassa-Holm Equation
    Chen, Yong
    Gao, Hongjun
    [J]. POTENTIAL ANALYSIS, 2016, 45 (02) : 331 - 354
  • [7] GLOBAL WELL-POSEDNESS OF THE VISCOUS CAMASSA-HOLM EQUATION WITH GRADIENT NOISE
    Holden, Helge
    Karlsen, Kenneth H.
    Pang, Peter H. C.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, : 568 - 618
  • [8] Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities
    Miao, Yingting
    Rohde, Christian
    Tang, Hao
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (01): : 614 - 674
  • [9] Well-posedness of the modified Camassa-Holm equation in Besov spaces
    Tang, Hao
    Liu, Zhengrong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1559 - 1580
  • [10] On Well-Posedness Results for Camassa-Holm Equation on the Line: A Survey
    Luc Molinet
    [J]. Journal of Nonlinear Mathematical Physics, 2004, 11 : 521 - 533