A note on well-posedness for Camassa-Holm equation

被引:223
|
作者
Danchin, R [1 ]
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris, France
关键词
D O I
10.1016/S0022-0396(03)00096-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we investigate the problem of well-posedness for a shallow water equation with data having critical regularity. Our results are based on the use of Besov spaces B-2,r(s) (which generalize the Sobolev spaces H-s) with critical index s 3/2. (C) 2003 Published by Elsevier Science (USA).
引用
收藏
页码:429 / 444
页数:16
相关论文
共 50 条
  • [1] Well-posedness for stochastic Camassa-Holm equation
    Chen, Yong
    Gao, Hongjun
    Guo, Boling
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) : 2353 - 2379
  • [2] Global well-posedness for the viscous Camassa-Holm equation
    Lim, Wee Keong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) : 432 - 442
  • [3] GLOBAL WELL-POSEDNESS OF THE STOCHASTIC CAMASSA-HOLM EQUATION
    Chen, Yong
    Duan, Jinqiao
    Gao, Hongjun
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (03) : 607 - 627
  • [4] Well-posedness of the modified Camassa-Holm equation in Besov spaces
    Tang, Hao
    Liu, Zhengrong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1559 - 1580
  • [5] On Well-Posedness Results for Camassa-Holm Equation on the Line: A Survey
    Luc Molinet
    [J]. Journal of Nonlinear Mathematical Physics, 2004, 11 : 521 - 533
  • [6] Nonuniform dependence and well-posedness for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Wang, Linsong
    Guo, Boling
    Mu, Chunlai
    [J]. APPLICABLE ANALYSIS, 2019, 98 (08) : 1520 - 1548
  • [7] On well-posedness results for Camassa-Holm equation on the line: A survey
    Molinet, L
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 (04) : 521 - 533
  • [8] LOCAL WELL-POSEDNESS OF THE CAMASSA-HOLM EQUATION ON THE REAL LINE
    Lee, Jae Min
    Preston, Stephen C.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3285 - 3299
  • [9] Well-posedness of modified Camassa-Holm equations
    McLachlan, Robert
    Zhang, Xingyou
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (08) : 3241 - 3259
  • [10] On the well-posedness of the Camassa-Holm equation in the Triebel-Lizorkin spaces
    Yang, Minsuk
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 20 - 31