Global well-posedness for the viscous Camassa-Holm equation

被引:10
|
作者
Lim, Wee Keong [1 ]
机构
[1] Multimedia Univ, Fac Engn, Cyberjaya, Malaysia
关键词
Camassa-Holm equation;
D O I
10.1016/j.jmaa.2006.01.095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem (IVP) of the Camassa-Holm equation with viscosity. We established global solution for the IVP with u(0) is an element of L-2(R). This result improves the previous results. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:432 / 442
页数:11
相关论文
共 50 条
  • [1] GLOBAL WELL-POSEDNESS OF THE VISCOUS CAMASSA-HOLM EQUATION WITH GRADIENT NOISE
    Holden, Helge
    Karlsen, Kenneth H.
    Pang, Peter H. C.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, : 568 - 618
  • [2] GLOBAL WELL-POSEDNESS OF THE STOCHASTIC CAMASSA-HOLM EQUATION
    Chen, Yong
    Duan, Jinqiao
    Gao, Hongjun
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (03) : 607 - 627
  • [3] A note on well-posedness for Camassa-Holm equation
    Danchin, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (02) : 429 - 444
  • [4] Well-posedness for stochastic Camassa-Holm equation
    Chen, Yong
    Gao, Hongjun
    Guo, Boling
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) : 2353 - 2379
  • [5] On the Global Well-Posedness of the Viscous Two-Component Camassa-Holm System
    Li, Xiuming
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [6] Well-posedness of the modified Camassa-Holm equation in Besov spaces
    Tang, Hao
    Liu, Zhengrong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1559 - 1580
  • [7] On Well-Posedness Results for Camassa-Holm Equation on the Line: A Survey
    Luc Molinet
    [J]. Journal of Nonlinear Mathematical Physics, 2004, 11 : 521 - 533
  • [8] Nonuniform dependence and well-posedness for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Wang, Linsong
    Guo, Boling
    Mu, Chunlai
    [J]. APPLICABLE ANALYSIS, 2019, 98 (08) : 1520 - 1548
  • [9] On well-posedness results for Camassa-Holm equation on the line: A survey
    Molinet, L
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 (04) : 521 - 533
  • [10] LOCAL WELL-POSEDNESS OF THE CAMASSA-HOLM EQUATION ON THE REAL LINE
    Lee, Jae Min
    Preston, Stephen C.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3285 - 3299