Constructing 1/ωα noise from reversible Markov chains

被引:17
|
作者
Erland, Sveinung
Greenwood, Priscilla E.
机构
[1] Norwegian Univ Sci & Technol, Dept Math, N-7491 Trondheim, Norway
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevE.76.031114
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper gives sufficient conditions for the output of 1/omega(alpha) noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/omega(alpha) condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/omega noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/omega(alpha) noise which also has a long memory.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Information Geometry of Reversible Markov Chains
    Wolfer G.
    Watanabe S.
    Information Geometry, 2021, 4 (2) : 393 - 433
  • [22] ON THE INVARIANCE PRINCIPLE FOR REVERSIBLE MARKOV CHAINS
    Peligrad, Magda
    Utev, Sergey
    JOURNAL OF APPLIED PROBABILITY, 2016, 53 (02) : 593 - 599
  • [23] The smallest eigenvalue for reversible Markov chains
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 383 : 175 - 186
  • [24] On kernel estimators of density for reversible Markov chains
    Longla, Martial
    Peligrad, Magda
    Sang, Hailin
    STATISTICS & PROBABILITY LETTERS, 2015, 100 : 149 - 157
  • [25] BAYESIAN NONPARAMETRIC ANALYSIS OF REVERSIBLE MARKOV CHAINS
    Bacallado, Sergio
    Favaro, Stefano
    Trippa, Lorenzo
    ANNALS OF STATISTICS, 2013, 41 (02): : 870 - 896
  • [26] Lower and upper bounds for reversible Markov chains
    Delmotte, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09): : 1053 - 1058
  • [27] SPECTRAL THEORY FOR WEAKLY REVERSIBLE MARKOV CHAINS
    Wuebker, Achim
    JOURNAL OF APPLIED PROBABILITY, 2012, 49 (01) : 245 - 265
  • [28] Upgrading MLSI to LSI for reversible Markov chains
    Salez, Justin
    Tikhomirov, Konstantin
    Youssef, Pierre
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (09)
  • [29] On filtering of Markov chains in strong noise
    Chigansky, Pavel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4267 - 4272
  • [30] Interlacing eigenvalues in time reversible Markov chains
    Brown, M
    MATHEMATICS OF OPERATIONS RESEARCH, 1999, 24 (04) : 847 - 864