Constructing 1/ωα noise from reversible Markov chains

被引:17
|
作者
Erland, Sveinung
Greenwood, Priscilla E.
机构
[1] Norwegian Univ Sci & Technol, Dept Math, N-7491 Trondheim, Norway
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevE.76.031114
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper gives sufficient conditions for the output of 1/omega(alpha) noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/omega(alpha) condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/omega noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/omega(alpha) noise which also has a long memory.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] On Reversible Markov Chains and Maximization of Directed Information
    Gorantla, Siva K.
    Coleman, Todd P.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 216 - 220
  • [32] APPROXIMATIONS OF GEOMETRICALLY ERGODIC REVERSIBLE MARKOV CHAINS
    Negrea, Jeffrey
    Rosenthal, Jeffrey S.
    ADVANCES IN APPLIED PROBABILITY, 2021, 53 (04) : 981 - 1022
  • [33] SOME INEQUALITIES FOR REVERSIBLE MARKOV-CHAINS
    ALDOUS, DJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 25 (JUN): : 564 - 576
  • [34] TRANSITION PROBABILITY ESTIMATES FOR REVERSIBLE MARKOV CHAINS
    Telcs, Andras
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 : 29 - 37
  • [35] Comparing limit profiles of reversible Markov chains
    Nestoridi, Evita
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [36] MIXING TIME ESTIMATION IN REVERSIBLE MARKOV CHAINS FROM A SINGLE SAMPLE PATH
    Hsu, Daniel
    Kontorovich, Aryeh
    Levin, David A.
    Peres, Yuval
    Szepesvari, Csaba
    Wolfer, Geoffrey
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (04): : 2439 - 2480
  • [37] Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path
    Hsu, Daniel
    Kontorovich, Aryeh
    Szepesvari, Csaba
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [38] Average mixing in quantum walks of reversible Markov chains
    Sorci, Julien
    DISCRETE MATHEMATICS, 2025, 348 (01)
  • [39] Metastability and Low Lying Spectra¶in Reversible Markov Chains
    Anton Bovier
    Michael Eckhoff
    Véronique Gayrard
    Markus Klein
    Communications in Mathematical Physics, 2002, 228 : 219 - 255
  • [40] Metastability and low lying spectra in reversible Markov chains
    Bovier, A
    Eckhoff, M
    Gayrard, V
    Klein, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (02) : 219 - 255