Upgrading MLSI to LSI for reversible Markov chains

被引:3
|
作者
Salez, Justin [1 ]
Tikhomirov, Konstantin [2 ,3 ]
Youssef, Pierre [4 ,5 ]
机构
[1] Univ Paris Dauphine & PSL, CEREMADE, Pl Marechal Lattre Tassigny, F-75775 Paris 16, France
[2] Georgia Inst Technol, Sch Math, 686 Cherry St, Atlanta, GA 30332 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Wean Hall 6113, Pittsburgh, PA 15213 USA
[4] NYU Abu Dhabi, Div Sci, Abu Dhabi, U Arab Emirates
[5] NYU, Courant Inst Math Sci, 251 Mercer st, New York, NY 10012 USA
关键词
Functional inequalities; Logarithmic Sobolev inequalities; Modified log-Sobolev inequalities; Reversible Markov chains; Mixing times; LOGARITHMIC SOBOLEV INEQUALITIES; DECAY; TIMES;
D O I
10.1016/j.jfa.2023.110076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For reversible Markov chains on finite state spaces, we show that the modified log-Sobolev inequality (MLSI) can be upgraded to a log-Sobolev inequality (LSI) at the surprisingly low cost of degrading the associated constant by log(1/p), where p is the minimum non-zero transition probability. We illustrate this by providing the first log-Sobolev estimate for Zero-Range processes on arbitrary graphs. As another application, we determine the modified log-Sobolev constant of the Lamplighter chain on all bounded-degree graphs, and use it to provide negative answers to two open questions by Montenegro and Tetali (2006) [27] and Hermon and Peres (2018) [17]. Our proof builds upon the 'regularization trick' recently introduced by the last two authors. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Accelerating reversible Markov chains
    Chen, Ting-Li
    Hwang, Chii-Ruey
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (09) : 1956 - 1962
  • [2] The algebra of reversible Markov chains
    Pistone, Giovanni
    Rogantin, Maria Piera
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (02) : 269 - 293
  • [3] The algebra of reversible Markov chains
    Giovanni Pistone
    Maria Piera Rogantin
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 269 - 293
  • [4] Estimation in Reversible Markov Chains
    Annis, David H.
    Kiessler, Peter C.
    Lund, Robert
    Steuber, Tara L.
    AMERICAN STATISTICIAN, 2010, 64 (02): : 116 - 120
  • [5] A monotonicity in reversible Markov chains
    Lund, Robert
    Zhao, Ying
    Kiessler, Peter C.
    JOURNAL OF APPLIED PROBABILITY, 2006, 43 (02) : 486 - 499
  • [6] Preserving the Markov Property of Reduced Reversible Markov Chains
    Weber, Marcus
    Kube, Susanna
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 593 - 596
  • [7] A combinatorial approach to nearly uncoupled Markov chains I: Reversible Markov chains
    Tifenbach, R.M. (ryan.tifenbach@mun.ca), 1600, Kent State University (40):
  • [8] A COMBINATORIAL APPROACH TO NEARLY UNCOUPLED MARKOV CHAINS I: REVERSIBLE MARKOV CHAINS
    Tifenbach, Ryan M.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2013, 40 : 120 - 147
  • [9] Multiple Ergodicity For Reversible Markov Chains
    Yuan LIU
    ActaMathematicaeApplicataeSinica, 2018, 34 (04) : 863 - 868
  • [10] Bayesian analysis for reversible Markov chains
    Diaconis, Persi
    Rolles, Silke W. W.
    ANNALS OF STATISTICS, 2006, 34 (03): : 1270 - 1292