Upgrading MLSI to LSI for reversible Markov chains

被引:3
|
作者
Salez, Justin [1 ]
Tikhomirov, Konstantin [2 ,3 ]
Youssef, Pierre [4 ,5 ]
机构
[1] Univ Paris Dauphine & PSL, CEREMADE, Pl Marechal Lattre Tassigny, F-75775 Paris 16, France
[2] Georgia Inst Technol, Sch Math, 686 Cherry St, Atlanta, GA 30332 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Wean Hall 6113, Pittsburgh, PA 15213 USA
[4] NYU Abu Dhabi, Div Sci, Abu Dhabi, U Arab Emirates
[5] NYU, Courant Inst Math Sci, 251 Mercer st, New York, NY 10012 USA
关键词
Functional inequalities; Logarithmic Sobolev inequalities; Modified log-Sobolev inequalities; Reversible Markov chains; Mixing times; LOGARITHMIC SOBOLEV INEQUALITIES; DECAY; TIMES;
D O I
10.1016/j.jfa.2023.110076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For reversible Markov chains on finite state spaces, we show that the modified log-Sobolev inequality (MLSI) can be upgraded to a log-Sobolev inequality (LSI) at the surprisingly low cost of degrading the associated constant by log(1/p), where p is the minimum non-zero transition probability. We illustrate this by providing the first log-Sobolev estimate for Zero-Range processes on arbitrary graphs. As another application, we determine the modified log-Sobolev constant of the Lamplighter chain on all bounded-degree graphs, and use it to provide negative answers to two open questions by Montenegro and Tetali (2006) [27] and Hermon and Peres (2018) [17]. Our proof builds upon the 'regularization trick' recently introduced by the last two authors. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Information Geometry of Reversible Markov Chains
    Wolfer G.
    Watanabe S.
    Information Geometry, 2021, 4 (2) : 393 - 433
  • [22] ON THE INVARIANCE PRINCIPLE FOR REVERSIBLE MARKOV CHAINS
    Peligrad, Magda
    Utev, Sergey
    JOURNAL OF APPLIED PROBABILITY, 2016, 53 (02) : 593 - 599
  • [23] The smallest eigenvalue for reversible Markov chains
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 383 : 175 - 186
  • [24] On kernel estimators of density for reversible Markov chains
    Longla, Martial
    Peligrad, Magda
    Sang, Hailin
    STATISTICS & PROBABILITY LETTERS, 2015, 100 : 149 - 157
  • [25] BAYESIAN NONPARAMETRIC ANALYSIS OF REVERSIBLE MARKOV CHAINS
    Bacallado, Sergio
    Favaro, Stefano
    Trippa, Lorenzo
    ANNALS OF STATISTICS, 2013, 41 (02): : 870 - 896
  • [26] Lower and upper bounds for reversible Markov chains
    Delmotte, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09): : 1053 - 1058
  • [27] SPECTRAL THEORY FOR WEAKLY REVERSIBLE MARKOV CHAINS
    Wuebker, Achim
    JOURNAL OF APPLIED PROBABILITY, 2012, 49 (01) : 245 - 265
  • [28] Interlacing eigenvalues in time reversible Markov chains
    Brown, M
    MATHEMATICS OF OPERATIONS RESEARCH, 1999, 24 (04) : 847 - 864
  • [29] On Reversible Markov Chains and Maximization of Directed Information
    Gorantla, Siva K.
    Coleman, Todd P.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 216 - 220
  • [30] APPROXIMATIONS OF GEOMETRICALLY ERGODIC REVERSIBLE MARKOV CHAINS
    Negrea, Jeffrey
    Rosenthal, Jeffrey S.
    ADVANCES IN APPLIED PROBABILITY, 2021, 53 (04) : 981 - 1022