Automated Assessment of Image Sharpness Degradation in Iterative CT Reconstruction Techniques: Vessel-Sharpness in Contrast-Enhanced Liver

被引:0
|
作者
Chun, M. [1 ]
Jin, H. [1 ]
Kim, S. [2 ]
Jeong, W. K. [3 ]
Heo, C. [2 ]
Kim, J. [1 ,2 ]
机构
[1] Seoul Natl Univ Hosp, Seoul, South Korea
[2] Seoul Natl Univ, Seoul, South Korea
[3] Samsung Med Ctr, Seoul, South Korea
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
TU-IePD-TR
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Contrast-Enhanced CT with Knowledge-Based Iterative Model Reconstruction for the Evaluation of Parotid Gland Tumors: A Feasibility Study
    Park, Chae Jung
    Kim, Ki Wook
    Lee, Ho-Joon
    Kim, Myeong-Jin
    Kim, Jinna
    KOREAN JOURNAL OF RADIOLOGY, 2018, 19 (05) : 957 - 964
  • [22] Combining low tube voltage and iterative reconstruction for contrast-enhanced CT imaging of the chest-Initial clinical experience
    Li, Q.
    Yu, H.
    Zhang, L.
    Fan, L.
    Liu, S. -y.
    CLINICAL RADIOLOGY, 2013, 68 (05) : E249 - E253
  • [23] Image Quality Assessment of Contrast-Enhanced 4D-CT for Pancreatic Adenocarcinoma in Radiotherapy Simulation
    Choi, W.
    Xue, M.
    Kang, M.
    Patel, K.
    Regine, W.
    Klahr, P.
    Wang, J.
    D'Souza, W.
    Lu, W.
    MEDICAL PHYSICS, 2015, 42 (06) : 3300 - 3300
  • [24] Assessment of image quality and dose in contrast-enhanced head and neck CT angiography of New Zealand rabbit
    Hsiao, Chia-Chi
    Chen, Po-Chou
    Kuo, Pei-Chi
    Ho, Chih-Hao
    Jao, Jo-Chi
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (04) : 739 - 750
  • [25] Model-based Iterative Reconstruction and Adaptive Statistical Iterative Reconstruction Techniques in Abdominal CT: Comparison of Image Quality in the Detection of Colorectal Liver Metastases
    Volders, David
    Bols, Alain
    Haspeslagh, Marc
    Coenegrachts, Kenneth
    RADIOLOGY, 2013, 269 (02) : 468 - 473
  • [26] Deep-learning-based image reconstruction in dynamic contrast-enhanced abdominal CT: image quality and lesion detection among reconstruction strength levels
    Kaga, T.
    Noda, Y.
    Fujimoto, K.
    Suto, T.
    Kawai, N.
    Miyoshi, T.
    Hyodo, F.
    Matsuo, M.
    CLINICAL RADIOLOGY, 2021, 76 (09) : 710.e15 - 710.e24
  • [27] Motion-compensated image reconstruction for improved kidney function assessment using dynamic contrast-enhanced MRI
    Ariyurek, Cemre
    Kocanaogullari, Aziz
    Afacan, Onur
    Kurugol, Sila
    NMR IN BIOMEDICINE, 2024, 37 (06)
  • [28] Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images
    Aashish C. Gupta
    Guillaume Cazoulat
    Mais Al Taie
    Sireesha Yedururi
    Bastien Rigaud
    Austin Castelo
    John Wood
    Cenji Yu
    Caleb O’Connor
    Usama Salem
    Jessica Albuquerque Marques Silva
    Aaron Kyle Jones
    Molly McCulloch
    Bruno C. Odisio
    Eugene J. Koay
    Kristy K. Brock
    Scientific Reports, 14
  • [29] Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images
    Gupta, Aashish C.
    Cazoulat, Guillaume
    Al Taie, Mais
    Yedururi, Sireesha
    Rigaud, Bastien
    Castelo, Austin
    Wood, John
    Yu, Cenji
    O'Connor, Caleb
    Salem, Usama
    Silva, Jessica Albuquerque Marques
    Jones, Aaron Kyle
    McCulloch, Molly
    Odisio, Bruno C.
    Koay, Eugene J.
    Brock, Kristy K.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [30] Improving spatial resolution and diagnostic confidence with thinner slice and deep learning image reconstruction in contrast-enhanced abdominal CT
    Cao, Le
    Liu, Xiang
    Qu, Tingting
    Cheng, Yannan
    Li, Jianying
    Li, Yanan
    Chen, Lihong
    Niu, Xinyi
    Tian, Qian
    Guo, Jianxin
    EUROPEAN RADIOLOGY, 2023, 33 (03) : 1603 - 1611