Online clutter estimation using a Gaussian kernel density estimator for multitarget tracking

被引:13
|
作者
Chen, Xin [1 ]
Tharmarasa, Ratnasingham [1 ]
Kirubarajan, Thia [1 ]
McDonald, Mike [2 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada
[2] Radar Syst Def R&D Canada Ottawa, Surveillance Radar Grp, Ottawa, ON, Canada
来源
IET RADAR SONAR AND NAVIGATION | 2015年 / 9卷 / 01期
关键词
ALGORITHM;
D O I
10.1049/iet-rsn.2014.0037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the spatial distribution of false alarms is assumed to be a non-homogeneous Poisson point (NHPP) process. Then, a new method is developed under the kernel density estimation (KDE) framework to estimate the spatial intensity of false alarms for the multitarget tracking problem. In the proposed method, the false alarm spatial intensity estimation problem is decomposed into two subproblems: (i) estimating the number of false alarms in one scan and (ii) estimating the variation of the intensity function value in the measurement space. Under the NHPP assumption, the only parameter that needs to be estimated for the first subproblem is the mean of false alarm number, and the empirical mean is used here as the maximum likelihood estimate of that parameter. Then, for the second subproblem, an online multivariate local adaptive Gaussian kernel density estimator is proposed. Furthermore, the proposed estimation method is seamlessly integrated with widely used multitarget trackers, like the joint integrated probabilistic data association algorithm and the multiple hypotheses tracking algorithm. Simulation results show that the proposed KDE-based method can provide a better estimate of the false alarm spatial intensity and help the multitarget trackers yield superior performance in scenarios with spatially non-homogeneous false alarms.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [41] Proposal of Online Outlier Detection in Sensor Data Using Kernel Density Estimation
    Haque, Md Atiqul
    Mineno, Hiroshi
    2017 6TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), 2017, : 1051 - 1052
  • [42] MULTITARGET TRACKING USING GAUSSIAN PROCESS DYNAMICAL MODEL PARTICLE FILTER
    Wang, Jing
    Man, Hong
    Yin, Yafeng
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1580 - 1583
  • [43] Robust Multitarget Tracking Scheme Based on Gaussian Mixture Probability Hypothesis Density Filter
    Choi, Mid-Eum
    Seo, Seung-Woo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (06) : 4217 - 4229
  • [44] Generalized Kernel Density Estimation Based Robust Estimator and Its Application
    Zhang, Zhen
    Zhang, Yanning
    Yao, Rui
    Li, Haisen
    Zhu, Yu
    INTELLIGENT SCIENCE AND INTELLIGENT DATA ENGINEERING, ISCIDE 2011, 2012, 7202 : 112 - 121
  • [45] A robust estimator for structure from motion based on kernel density estimation
    Tai, Chen
    Liu, Yun-hui
    2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, : 1298 - +
  • [46] An improved constraint-based Bayesian network learning method using Gaussian kernel probability density estimator
    Jiang, Yaling
    Liang, Zizhen
    Gao, Hui
    Guo, Yang
    Zhong, Zhiman
    Yang, Chen
    Liu, Jianxiao
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 113 : 544 - 554
  • [47] Tracking dim targets using integrated clutter estimation
    Brekke, Edmund
    Kirubarajan, Thiagalingam
    Tharmarasa, Ratnasingharn
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2007, 2007, 6699
  • [48] Scalable Multisensor Multitarget Tracking Using the Marginalized δ-GLMB Density
    Fantacci, Claudio
    Papi, Francesco
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (06) : 863 - 867
  • [49] Enhancing Broiler Weight Estimation through Gaussian Kernel Density Estimation Modeling
    Oh, Yumi
    Lyu, Peng
    Ko, Sunwoo
    Min, Jeongik
    Song, Juwhan
    AGRICULTURE-BASEL, 2024, 14 (06):
  • [50] Adaptive kernel density estimation using beta kernel
    Yin, Xun-Fu
    Hao, Zhi-Feng
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3293 - +