Online clutter estimation using a Gaussian kernel density estimator for multitarget tracking

被引:13
|
作者
Chen, Xin [1 ]
Tharmarasa, Ratnasingham [1 ]
Kirubarajan, Thia [1 ]
McDonald, Mike [2 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada
[2] Radar Syst Def R&D Canada Ottawa, Surveillance Radar Grp, Ottawa, ON, Canada
来源
IET RADAR SONAR AND NAVIGATION | 2015年 / 9卷 / 01期
关键词
ALGORITHM;
D O I
10.1049/iet-rsn.2014.0037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the spatial distribution of false alarms is assumed to be a non-homogeneous Poisson point (NHPP) process. Then, a new method is developed under the kernel density estimation (KDE) framework to estimate the spatial intensity of false alarms for the multitarget tracking problem. In the proposed method, the false alarm spatial intensity estimation problem is decomposed into two subproblems: (i) estimating the number of false alarms in one scan and (ii) estimating the variation of the intensity function value in the measurement space. Under the NHPP assumption, the only parameter that needs to be estimated for the first subproblem is the mean of false alarm number, and the empirical mean is used here as the maximum likelihood estimate of that parameter. Then, for the second subproblem, an online multivariate local adaptive Gaussian kernel density estimator is proposed. Furthermore, the proposed estimation method is seamlessly integrated with widely used multitarget trackers, like the joint integrated probabilistic data association algorithm and the multiple hypotheses tracking algorithm. Simulation results show that the proposed KDE-based method can provide a better estimate of the false alarm spatial intensity and help the multitarget trackers yield superior performance in scenarios with spatially non-homogeneous false alarms.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] Kernel Minimum Error Entropy Based Estimator for MIMO Radar in Non-Gaussian Clutter
    Singh, Uday Kumar
    Mitra, Rangeet
    Bhatia, Vimal
    Mishra, Amit Kumar
    IEEE ACCESS, 2021, 9 (09): : 125320 - 125330
  • [22] Adaptive Nonlinear Equalizer Using a Mixture of Gaussian-Based Online Density Estimator
    Chen, Hao
    Gong, Yu
    Hong, Xia
    Chen, Sheng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2014, 63 (09) : 4265 - 4276
  • [23] Multitarget Filtering With Unknown Clutter Density Using a Bootstrap GMCPHD Filter
    Beard, Michael
    Ba-Tuong Vo
    Ba-Ngu Vo
    IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (04) : 323 - 326
  • [24] Online kernel density estimation for interactive learning
    Kristan, M.
    Skocaj, D.
    Leonardis, A.
    IMAGE AND VISION COMPUTING, 2010, 28 (07) : 1106 - 1116
  • [25] Adaptive Online Kernel Density Estimation Method
    Deng Q.-L.
    Qiu T.-Y.
    Shen F.-R.
    Zhao J.-X.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (04): : 1173 - 1188
  • [26] Moving object detection method using background Gaussian kernel density estimation
    Wang, Jin-Song
    Yan, Yi-An
    Wei, Fa-Jie
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2009, 38 (02): : 373 - 376
  • [27] Estimator Selection: a New Method with Applications to Kernel Density Estimation
    Lacour C.
    Massart P.
    Rivoirard V.
    Sankhya A, 2017, 79 (2): : 298 - 335
  • [28] A note on density estimation via the hyperbolic secant kernel estimator
    Bakouch, Hassan S.
    Elsamadony, Ola A.
    Chesneau, Christophe
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (08): : 2007 - 2019
  • [29] Sequential Processing JIPDA for Multitarget Tracking in Clutter Using Multistatic Passive Radar
    Shi, Yi Fang
    Song, Taek Lyul
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 711 - 718
  • [30] Multitarget tracking in clutter: Two algorithms for data association using BPNN and LVQNN
    Daneva, M
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOL 3, STUDENT SESSIONS, PROCEEDINGS, 2004, : 92 - 97