Online clutter estimation using a Gaussian kernel density estimator for multitarget tracking

被引:13
|
作者
Chen, Xin [1 ]
Tharmarasa, Ratnasingham [1 ]
Kirubarajan, Thia [1 ]
McDonald, Mike [2 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada
[2] Radar Syst Def R&D Canada Ottawa, Surveillance Radar Grp, Ottawa, ON, Canada
来源
IET RADAR SONAR AND NAVIGATION | 2015年 / 9卷 / 01期
关键词
ALGORITHM;
D O I
10.1049/iet-rsn.2014.0037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the spatial distribution of false alarms is assumed to be a non-homogeneous Poisson point (NHPP) process. Then, a new method is developed under the kernel density estimation (KDE) framework to estimate the spatial intensity of false alarms for the multitarget tracking problem. In the proposed method, the false alarm spatial intensity estimation problem is decomposed into two subproblems: (i) estimating the number of false alarms in one scan and (ii) estimating the variation of the intensity function value in the measurement space. Under the NHPP assumption, the only parameter that needs to be estimated for the first subproblem is the mean of false alarm number, and the empirical mean is used here as the maximum likelihood estimate of that parameter. Then, for the second subproblem, an online multivariate local adaptive Gaussian kernel density estimator is proposed. Furthermore, the proposed estimation method is seamlessly integrated with widely used multitarget trackers, like the joint integrated probabilistic data association algorithm and the multiple hypotheses tracking algorithm. Simulation results show that the proposed KDE-based method can provide a better estimate of the false alarm spatial intensity and help the multitarget trackers yield superior performance in scenarios with spatially non-homogeneous false alarms.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Clutter Identification Based on Kernel Density Estimation and sparse-recovery
    Wang, Haokun
    Xiang, Yijian
    Dagois, Elise
    Kelsey, Malia
    Sen, Satyabrata
    Nehorai, Arye
    Akcakaya, Murat
    COMPRESSIVE SENSING VII: FROM DIVERSE MODALITIES TO BIG DATA ANALYTICS, 2018, 10658
  • [32] Multitarget tracking using the Joint Multitrack Probability Density
    Garcia-Fernandez, Angel F.
    Grajal, Jesus
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 595 - 602
  • [33] Multitarget Tracking using Probability Hypothesis Density Smoothing
    Nadarajah, N.
    Kirubarajan, T.
    Lang, T.
    McDonald, M.
    Punithakumar, K.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2011, 47 (04) : 2344 - 2360
  • [34] Adaptive Clutter Measurement Density Estimation for Improved Target Tracking
    Song, Taek Lyul
    Musicki, Darko
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2011, 47 (02) : 1457 - 1466
  • [35] Integrated real-time estimation of clutter density for tracking
    Li, XR
    Li, N
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1998, 1998, 3373 : 559 - 571
  • [36] Integrated real-time estimation of clutter density for tracking
    Li, XR
    Li, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (10) : 2797 - 2805
  • [37] Multi-target tracking algorithm based on kernel density estimation Gaussian mixture PHD filter
    Zhou W.-D.
    Zhang H.-B.
    Qiao X.-W.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2011, 33 (09): : 1932 - 1936
  • [38] Error bounds for kernel density estimator of spectral distribution for Gaussian Unitary Ensembles
    Jiang, Hui
    Wang, Shaochen
    STATISTICS & PROBABILITY LETTERS, 2017, 126 : 179 - 184
  • [39] Range and Velocity Estimation Using Kernel Maximum Correntropy Based Nonlinear Estimators in Non-Gaussian Clutter
    Singh, Uday Kumar
    Mitra, Rangeet
    Bhatia, Vimal
    Mishra, Amit Kumar
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (03) : 1992 - 2004
  • [40] Adaptive Estimation of Spatial Clutter Measurement Density Using Clutter Measurement Probability for Enhanced Multi-Target Tracking
    Park, Seung Hyo
    Chong, Sa Yong
    Kim, Hyung June
    Song, Taek Lyul
    SENSORS, 2020, 20 (01)