Online clutter estimation using a Gaussian kernel density estimator for multitarget tracking

被引:13
|
作者
Chen, Xin [1 ]
Tharmarasa, Ratnasingham [1 ]
Kirubarajan, Thia [1 ]
McDonald, Mike [2 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada
[2] Radar Syst Def R&D Canada Ottawa, Surveillance Radar Grp, Ottawa, ON, Canada
来源
IET RADAR SONAR AND NAVIGATION | 2015年 / 9卷 / 01期
关键词
ALGORITHM;
D O I
10.1049/iet-rsn.2014.0037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the spatial distribution of false alarms is assumed to be a non-homogeneous Poisson point (NHPP) process. Then, a new method is developed under the kernel density estimation (KDE) framework to estimate the spatial intensity of false alarms for the multitarget tracking problem. In the proposed method, the false alarm spatial intensity estimation problem is decomposed into two subproblems: (i) estimating the number of false alarms in one scan and (ii) estimating the variation of the intensity function value in the measurement space. Under the NHPP assumption, the only parameter that needs to be estimated for the first subproblem is the mean of false alarm number, and the empirical mean is used here as the maximum likelihood estimate of that parameter. Then, for the second subproblem, an online multivariate local adaptive Gaussian kernel density estimator is proposed. Furthermore, the proposed estimation method is seamlessly integrated with widely used multitarget trackers, like the joint integrated probabilistic data association algorithm and the multiple hypotheses tracking algorithm. Simulation results show that the proposed KDE-based method can provide a better estimate of the false alarm spatial intensity and help the multitarget trackers yield superior performance in scenarios with spatially non-homogeneous false alarms.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Online Discriminative Kernel Density Estimator With Gaussian Kernels
    Kristan, Matej
    Leonardis, Ales
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (03) : 355 - 365
  • [2] Multivariate online kernel density estimation with Gaussian kernels
    Kristan, Matej
    Leonardis, Ales
    Skocaj, Danijel
    PATTERN RECOGNITION, 2011, 44 (10-11) : 2630 - 2642
  • [3] Interactive clutter measurement density estimator for multitarget data association
    Kim, Woo Chan
    Song, Taek Lyul
    IET RADAR SONAR AND NAVIGATION, 2017, 11 (01): : 125 - 132
  • [4] Multitarget Tracking Algorithm Based on Clutter Model Estimation
    Lv Ning
    Lian Feng
    Han Chongzhao
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 1228 - 1235
  • [5] Modified Gaussian Mixture Probability Hypothesis Density Filtering using Clutter Density Estimation for Multiple Target Tracking
    Sun, Lifan
    Xue, Wenhui
    Gao, Dan
    JOURNAL OF AEROSPACE TECHNOLOGY AND MANAGEMENT, 2024, 16
  • [6] A Comparative Study of Higher Order Kernel Estimation and Kernel Density Derivative Estimation of the Gaussian Kernel Estimator with Data Application.
    Uzuazor, Siloko Israel
    Amaju, Ojobor Sunday
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2023, 19 (02) : 299 - 311
  • [7] Unknown Clutter Estimation by FMM Approach in Multitarget Tracking Algorithm
    Lv, Ning
    Lian, Feng
    Han, Chongzhao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [8] Online Geovisualization with Fast Kernel Density Estimator
    Hotta, Hajime
    Hagiwara, Masafumi
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2009, : 622 - 625
  • [9] Multitarget tracking using the joint multitarget probability density
    Kreucher, C
    Kastella, K
    Hero, AO
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2005, 41 (04) : 1396 - 1414
  • [10] Online kernel density estimation using fuzzy logic
    Zarch, Majid Ghaniee
    Alipouri, Yousef
    Poshtan, Javad
    IET SIGNAL PROCESSING, 2015, 9 (08) : 579 - 586