Back-End, CMOS-Compatible Ferroelectric Field-Effect Transistor for Synaptic Weights

被引:72
|
作者
Halter, Mattia [1 ,2 ]
Begon-Lours, Laura [1 ]
Bragaglia, Valeria [1 ]
Sousa, Marilyne [1 ]
Offrein, Bert Jan [1 ]
Abel, Stefan [1 ]
Luisier, Mathieu [2 ]
Fompeyrine, Jean [1 ]
机构
[1] IBM Res GmbH, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland
[2] ETH, Integrated Syst Lab, CH-8092 Zurich, Switzerland
基金
欧盟地平线“2020”;
关键词
ferroelectric switching; hafnium zirconium oxide; tungsten oxide; BEOL; ferroelectric field-effect transistor; memristor; MEMORY; FILMS; RETENTION; OPERATION; FET;
D O I
10.1021/acsami.0c00877
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Neuromorphic computing architectures enable the dense colocation of memory and processing elements within a single circuit. This colocation removes the communication bottleneck of transferring data between separate memory and computing units as in standard von Neuman architectures for data-critical applications including machine learning. The essential building blocks of neuromorphic systems are nonvolatile synaptic elements such as memristors. Key memristor properties include a suitable nonvolatile resistance range, continuous linear resistance modulation, and symmetric switching. In this work, we demonstrate voltage-controlled, symmetric and analog potentiation and depression of a ferroelectric Hf0.57Zr0.43O2 (HZO) field-effect transistor (FeFET) with good linearity. Our FeFET operates with low writing energy (fJ) and fast programming time (40 ns). Retention measurements have been performed over 4 bit depth with low noise (1%) in the tungsten oxide (WOx) readout channel. By adjusting the channel thickness from 15 to 8 nm, the on/off ratio of the FeFET can be engineered from 1 to 200% with an on-resistance ideally >100 k Omega, depending on the channel geometry. The device concept is using earth-abundant materials and is compatible with a back end of line (BEOL) integration into complementary metal-oxide-semiconductor (CMOS) processes. It has therefore a great potential for the fabrication of high-density, large-scale integrated arrays of artificial analog synapses.
引用
收藏
页码:17737 / 17744
页数:8
相关论文
共 50 条
  • [1] Ferroelectricity in CMOS-Compatible Hafnium Oxides Reviving the ferroelectric field-effect transistor technology
    Das, Dipjyoti
    Khan, Asif Islam
    [J]. IEEE NANOTECHNOLOGY MAGAZINE, 2021, 15 (05) : 20 - 32
  • [2] CMOS-Compatible Barometric Pressure Field-Effect Transistor-Type Sensor
    Lee, Chayoung
    Shin, Wonjun
    Jung, Gyuweon
    Park, Jinwoo
    Kim, Donghee
    Choi, Kangwook
    Shin, Hunhee
    Kim, Jae-Joon
    Lee, Jong-Ho
    [J]. IEEE ELECTRON DEVICE LETTERS, 2024, 45 (03) : 464 - 467
  • [3] Back-End-of-Line-Compatible Anneal-Free Ferroelectric Field-Effect Transistor
    Tsai, Shih-Hao
    Li, Zhonghua
    Phyu, Ma Mo Mo Ei
    Fang, Zihang
    Hooda, Sonu
    Chen, Chun-Kuei
    Zamburg, Evgeny
    Thean, Aaron Voon-Yew
    [J]. 2023 7TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM, 2023,
  • [4] Energy Harvesting in the Back-End of Line with CMOS Compatible Ferroelectric Hafnium Oxide
    Mart, C.
    Abdulazhanov, S.
    Czernohorsky, M.
    Kaempfe, T.
    Lehninger, D.
    Falidas, K.
    Esslinger, S.
    Kuehnel, K.
    Oehler, S.
    Rudolph, M.
    Wiatr, M.
    Kolodinski, S.
    Seidel, R.
    Weinreich, W.
    Eng, L. M.
    [J]. 2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
  • [5] CMOS-Compatible Silicon Nanowire Field-Effect Transistor Biosensor: Technology Development toward Commercialization
    Duy Phu Tran
    Thuy Thi Thanh Pham
    Wolfrum, Bernhard
    Offenhaeusser, Andreas
    Thierry, Benjamin
    [J]. MATERIALS, 2018, 11 (05)
  • [6] Back-End CMOS Compatible and Flexible Ferroelectric Memories for Neuromorphic Computing and Adaptive Sensing
    Majumdar, Sayani
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (04)
  • [7] Deuterated SiNx: a low-loss, back-end CMOS-compatible platform for nonlinear integrated optics
    Chia, Xavier X.
    Tan, Dawn T. H.
    [J]. NANOPHOTONICS, 2023, 12 (08) : 1613 - 1631
  • [8] Back-End and Flexible Substrate Compatible Analog Ferroelectric Field-Effect Transistors for Accurate Online Training in Deep Neural Network Accelerators
    Majumdar, Sayani
    Zeimpekis, Ioannis
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (11)
  • [9] CMOS-Compatible Silicon Nanowire Based Field-effect pH Sensor
    Gao, Anran
    Dai, Pengfei
    Lu, Na
    Li, Tie
    Wang, Yuelin
    [J]. 2012 INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), 2012, : 113 - 116
  • [10] CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators
    Cui, Jinsong
    An, Fufei
    Qian, Jiangchao
    Wu, Yuxuan
    Sloan, Luke L.
    Pidaparthy, Saran
    Zuo, Jian-Min
    Cao, Qing
    [J]. NATURE ELECTRONICS, 2023, 6 (04) : 292 - +