Deuterated SiNx: a low-loss, back-end CMOS-compatible platform for nonlinear integrated optics

被引:7
|
作者
Chia, Xavier X. [1 ]
Tan, Dawn T. H. [1 ,2 ]
机构
[1] Singapore Univ Technol & Design, Photon Devices & Syst Grp, Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[2] ASTAR, Inst Microelect, 2 Fusionopolis Way, Singapore 138634, Singapore
关键词
chemical vapour deposition; nonlinear optics; photonic-integrated circuits; silicon photonics; FREQUENCY COMB GENERATION; SILICON-NITRIDE FILMS; WAVE-GUIDES; 2ND-HARMONIC GENERATION; PLASMA; MICRORESONATORS; PASSIVATION; TEMPERATURE; RESONATORS; CRYSTALS;
D O I
10.1515/nanoph-2022-0626
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon nitride (SiN) has surged into prominence as a material for photonic-integrated circuits (PICs) in the past decade, well regarded for its broadband transparency, compatibility with complementary metal oxide semiconductor (CMOS) fabrication processes and high optical bandgap that avoids two-photon absorption. However, current fabrication methods result in users having to choose between low thermal budgets and low losses, which are suboptimal given that both are necessary to facilitate a wide range of applications. Recently, works have emerged featuring PICs fabricated using deuterated silicon nitride (SiNx:D) - SiNx films grown using deuterated precursors instead of conventional hydrogenated ones. This decreases material absorption near the telecommunications bands at 1.55 mu m previously present due to parasitic silicon-hydrogen and nitrogen-hydrogen bonds, attaining low-loss PICs realised using a low temperature, back-end-of-line CMOS-compatible fabrication plasma-enhanced chemical vapour deposition process. These devices have shown promise for both linear and nonlinear applications and the platform has the potential to be instrumental in realising highly efficient chips with co-packaged electronics and photonics devices. This paper reviews recent developments on the SiNx:D platform and provides a glance at future advancements for this highly promising material.
引用
收藏
页码:1613 / 1631
页数:19
相关论文
共 17 条
  • [1] CMOS-compatible, low-loss deuterated silicon nitride photonic devices for optical frequency combs
    Chiles, Jeff
    Nader, Nima
    Hickstein, Daniel D.
    Yu, Su Peng
    Briles, Travis Crain
    Carlson, David
    Jung, Hojoong
    Shainline, Jeffrey M.
    Diddams, Scott
    Papp, Scott
    Nam, Sae Woo
    Mirin, Richard P.
    [J]. 2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [2] Low-loss tantalum pentoxide photonics with a CMOS-compatible process
    Geng, Zhaoting
    Cheng, Weiren
    Yan, Zhiwei
    Yi, Qiyuan
    Liu, Zhenyu
    You, Mingjian
    Yu, Xiaolun
    Wu, Pengzhuo
    Ding, Ning
    Tang, Xingyu
    Wang, Min
    Shen, Li
    Zhao, Qiancheng
    [J]. OPTICS EXPRESS, 2024, 32 (07): : 12291 - 12302
  • [3] CMOS-Compatible PECVD Silicon Carbide Platform for Linear and Nonlinear Optics
    Xing, Peng
    Ma, Danhao
    Ooi, Kelvin J. A.
    Choi, Ju Won
    Agarwal, Anuradha Murthy
    Tan, Dawn
    [J]. ACS PHOTONICS, 2019, 6 (05) : 1162 - 1167
  • [4] Back-End, CMOS-Compatible Ferroelectric Field-Effect Transistor for Synaptic Weights
    Halter, Mattia
    Begon-Lours, Laura
    Bragaglia, Valeria
    Sousa, Marilyne
    Offrein, Bert Jan
    Abel, Stefan
    Luisier, Mathieu
    Fompeyrine, Jean
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (15) : 17737 - 17744
  • [5] A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing
    Zhang, Yi
    Yang, Shuyu
    Lim, Andy Eu-Jin
    Lo, Guo-Qiang
    Galland, Christophe
    Baehr-Jones, Tom
    Hochberg, Michael
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (05) : 422 - 425
  • [6] Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry
    Clemmen, Stephane
    Hermans, Artur
    Solano, Eduardo
    Dendooven, Jolien
    Koskinen, Kalle
    Kauranen, Martti
    Brainis, Edouard
    Detavernier, Christophe
    Baets, Roel
    [J]. OPTICS LETTERS, 2015, 40 (22) : 5371 - 5374
  • [7] Multichannel phase-sensitive amplification in a low-loss CMOS-compatible spiral waveguide
    Zhang, Yanbing
    Reimer, Christian
    Wu, Jenny
    Roztocki, Piotr
    Wetzel, Benjamin
    Little, Brent E.
    Chu, Sai T.
    Moss, David J.
    Eggleton, Benjamin J.
    Kues, Michael
    Morandotti, Roberto
    [J]. OPTICS LETTERS, 2017, 42 (21) : 4391 - 4394
  • [8] Simple and fully CMOS-compatible low -loss fiber coupling structure for a silicon photonics platform
    Maegami, Yuriko
    Okano, Makoto
    Cong, Guangwei
    Suzuki, Keijiro
    Ohno, Morifumi
    Narushima, Toshihiro
    Yokoyama, Nobuyuki
    Seki, Miyoshi
    Ohtsuka, Minoru
    Namiki, Shu
    Yamada, Koji
    [J]. OPTICS LETTERS, 2020, 45 (07) : 2095 - 2098
  • [9] A 300mm CMOS-compatible PECVD silicon nitride platform for integrated photonics with low loss and low process induced phase variation
    Saseendran, Sandeep S.
    Kongnyuy, Tangla D.
    Figeys, Bruno
    Buja, Federico
    Troia, Benedetto
    Kerman, Sarp
    Marinins, Aleksandrs
    Jansen, Roelof
    Rottenberg, Xavier
    Tezcan, Deniz S.
    Soussan, Philippe
    [J]. 2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [10] Low-Loss Micro-Resonator Filters Fabricated in Silicon by CMOS-Compatible Lithographic Techniques: Design and Characterization
    Marchetti, Riccardo
    Vitali, Valerio
    Lacava, Cosimo
    Cristiani, Ilaria
    Giuliani, Guido
    Muffato, Viviane
    Fournier, Maryse
    Abrate, Silvio
    Gaudino, Roberto
    Temporiti, Enrico
    Carroll, Lee
    Minzioni, Paolo
    [J]. APPLIED SCIENCES-BASEL, 2017, 7 (02):