Review on the operator/Feynman diagram/dessins d'enfants

被引:0
|
作者
Itoyama, H. [1 ,2 ,3 ]
Mironov, A. [4 ,5 ,6 ]
Morozov, A. [5 ,6 ,7 ]
Yoshioka, R. [3 ]
机构
[1] Osaka City Univ, Nambu Yoichiro Inst Theoret & Expt Phys NITEP, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[2] Osaka City Univ, Grad Sch Sci, Dept Math & Phys, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[3] Osaka City Univ, Adv Math Inst OCAMI, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[4] Lebedev Phys Inst, IE Tamm Theory Dept, Leninsky Prospect 53, Moscow 119991, Russia
[5] NRC Kurchatov Inst, AI Alikhanov Inst Theoret & Expt Phys, Bolshaya Cheremushkinskaya 25, Moscow 117259, Russia
[6] RAS, Kharkevich Inst, Inst Informat Transmiss Problems, Bolshoy Karetny 19,Build 1, Moscow 127051, Russia
[7] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
来源
关键词
Tensor model; Feynman diagrams; dessins d'enfants; LOOP EQUATIONS; MATRIX MODELS; TENSOR MODEL; GRAVITY; CONSTRAINTS; DIAGRAMS;
D O I
10.1142/S0217751X21300192
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper, a short review of the operator/Feynman diagram/dessin d'enfants correspondence in the rank 3 tensor model is presented, and the cut and join operation is given in the language of dessin d'enfants as a straightforward development. We classify operators of the rank 3 tensor model up to level 5 with dessin d'enfants. (Based on the talk given by R. Y. at the international workshop "Randomness, Integrability and Representation Theory in Quantum Field Theory" at the Osaka City University Media Center on March 25, 2021.)
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Dessins d'enfants, Seiberg-Witten curves and conformal blocks
    Bao, Jiakang
    Foda, Omar
    He, Yang-Hui
    Hirst, Edward
    Read, James
    Xiao, Yan
    Yagi, Futoshi
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
  • [42] Belyi-extending maps and the Galois action on Dessins d'Enfants
    Wood, Melanie Matchett
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2006, 42 (03) : 721 - 737
  • [43] The Chekhov-Fock parametrization of Teichmüller spaces and dessins d'enfants
    Shabat G.B.
    Zolotarskaia V.I.
    Journal of Mathematical Sciences, 2009, 158 (1) : 155 - 161
  • [44] Geometric balance of cuspidal points realizing dessins d'enfants on the Riemann sphere
    Toru Komatsu
    Mathematische Annalen, 2001, 320 : 417 - 429
  • [45] Chebycheff and Belyi polynomials, Dessins d'Enfants, Beauville surfaces and group theory
    Bauer, Ingrid
    Catanese, Fabrizio
    Grunewald, Fritz
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2006, 3 (02) : 121 - 146
  • [46] Three-point Lie algebras and Grothendieck's dessins d'enfants
    Chernousov, V.
    Gille, P.
    Pianzola, A.
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (01) : 81 - 104
  • [47] Chebycheff and Belyi Polynomials, Dessins d’Enfants, Beauville Surfaces and Group Theory
    Ingrid Bauer
    Fabrizio Catanese
    Fritz Grunewald
    Mediterranean Journal of Mathematics, 2006, 3 : 121 - 146
  • [48] Modular subgroups, dessins d'enfants and elliptic K3 surfaces
    He, Yang-Hui
    McKay, John
    Read, James
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2013, 16 : 271 - 318
  • [49] Geometric balance of cuspidal points realizing dessins d'enfants on the Riemann sphere
    Komatsu, T
    MATHEMATISCHE ANNALEN, 2001, 320 (03) : 417 - 429
  • [50] Fundamental groups of join-type sextics via dessins d'enfants
    Eyral, Christophe
    Oka, Mutsuo
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 76 - 120