Review on the operator/Feynman diagram/dessins d'enfants

被引:0
|
作者
Itoyama, H. [1 ,2 ,3 ]
Mironov, A. [4 ,5 ,6 ]
Morozov, A. [5 ,6 ,7 ]
Yoshioka, R. [3 ]
机构
[1] Osaka City Univ, Nambu Yoichiro Inst Theoret & Expt Phys NITEP, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[2] Osaka City Univ, Grad Sch Sci, Dept Math & Phys, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[3] Osaka City Univ, Adv Math Inst OCAMI, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[4] Lebedev Phys Inst, IE Tamm Theory Dept, Leninsky Prospect 53, Moscow 119991, Russia
[5] NRC Kurchatov Inst, AI Alikhanov Inst Theoret & Expt Phys, Bolshaya Cheremushkinskaya 25, Moscow 117259, Russia
[6] RAS, Kharkevich Inst, Inst Informat Transmiss Problems, Bolshoy Karetny 19,Build 1, Moscow 127051, Russia
[7] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
来源
关键词
Tensor model; Feynman diagrams; dessins d'enfants; LOOP EQUATIONS; MATRIX MODELS; TENSOR MODEL; GRAVITY; CONSTRAINTS; DIAGRAMS;
D O I
10.1142/S0217751X21300192
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper, a short review of the operator/Feynman diagram/dessin d'enfants correspondence in the rank 3 tensor model is presented, and the cut and join operation is given in the language of dessin d'enfants as a straightforward development. We classify operators of the rank 3 tensor model up to level 5 with dessin d'enfants. (Based on the talk given by R. Y. at the international workshop "Randomness, Integrability and Representation Theory in Quantum Field Theory" at the Osaka City University Media Center on March 25, 2021.)
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Polynomial systems supported on circuits and dessins d'enfants
    Bihan, Frederic
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 : 116 - 132
  • [22] Zariski k-plets via dessins d'enfants
    Degtyarev, Alex
    COMMENTARII MATHEMATICI HELVETICI, 2009, 84 (03) : 639 - 671
  • [23] Dessins D'Enfants, Brauer Graph Algebras and Galois Invariants
    Malic, Goran
    Schroll, Sibylle
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (01) : 655 - 665
  • [24] Polynomial vector fields, dessins d'enfants, and circle packings
    Pilgrim, KM
    Complex Dynamics, 2006, 396 : 129 - 138
  • [25] Belyi Pairs Corresponding to Dessins d'Enfants of Genus 3
    Epifanov, E. M.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2012, 67 (03) : 136 - 138
  • [26] Dessins d'Enfants and hypersurfaces with many Aj-singularities
    Labs, Oliver
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 : 607 - 622
  • [27] Quantum contextual finite geometries from dessins d'enfants
    Planat, Michel
    Giorgetti, Alain
    Holweck, Frederic
    Saniga, Metod
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (07)
  • [28] Catalog of dessins d'enfants with no more than 4 edges
    Adrianov N.M.
    Amburg N.Y.
    Dremov V.A.
    Kochetkov Y.Y.
    Kreines E.M.
    Levitskaya Y.A.
    Nasretdinova V.F.
    Shabat G.B.
    Journal of Mathematical Sciences, 2009, 158 (1) : 22 - 80
  • [29] Dessins D’Enfants, Brauer Graph Algebras and Galois Invariants
    Goran Malić
    Sibylle Schroll
    Algebras and Representation Theory, 2024, 27 : 655 - 665
  • [30] Belyi pairs corresponding to dessins d’enfants of genus 3
    E. M. Epifanov
    Moscow University Mathematics Bulletin, 2012, 67 (3) : 136 - 138